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Abstract— For socially assistive robots to achieve widespread
adoption, the ability to learn new tasks in the wild is critical.
Learning from Demonstration (LfD) approaches are a popular
method for learning in the wild, but current methods require
significant amounts of data and can be difficult to interpret. In-
teractive Task Learning (ITL) is an emerging learning paradigm
that aims to teach tasks in a structured manner, minimizing
the need for data and increasing transparency. However, to date
ITL has only been explored for physical robotics applications.
Additionally, minimal research has explored how usable existing
ITL systems are for non-expert users. In this work, we propose
a novel approach to learn social tasks via ITL. This system
utilizes recent advances in Natural Language Understanding
(NLU) to learn from natural dialogue. We conducted a pilot
study to compare the ITL system against an LfD approach
to investigate differences in teaching performance as well as
teachers’ perceptions of trust and workload towards these
systems. Additionally, we analyzed the teaching behavior of
participants to identify successful and unsuccessful teaching
strategies. Our findings suggest ITL could provide more trans-
parency to users and improve performance by correcting speech
recognition errors. However, participants generally preferred
LfD and found it an easier teaching method. From the observed
teaching behavior, we identify existing challenges in ITL for
non-experts to teach social tasks. Using this, we propose areas
of improvement toward future ITL learning paradigms that are
intuitive, transparent, and performant.

I. INTRODUCTION

Socially assistive robots (SARs) have tremendous potential
to improve our society, yet in order to do so these robots
require a means of learning how to interact with humans
in different tasks and settings. Given the infeasibility of
designing a fully general robot, it is imperative that non-
expert users can teach and adapt SARs in the wild. A popular
approach for this is learning from demonstration (LfD),
where a human demonstrates a task and the robot forms a
model that is used to execute the task independently. LfD has
shown promising results in physical domains such as object
manipulation as well as social domains such as therapy for
Autism Spectrum Disorder [1] and group activities for older
adults [2]. However, it can be difficult to teach tasks to SARs
because while these robots may look human they do not
have human-level cognition. Teachers may overestimate the
reasoning or common-sense knowledge of the robot based on
its humanoid appearance. This is referred to as the perceptual
belief problem [3]. It can significantly impair LfD because
a teacher cannot be effective without understanding what
concepts the robot already knows and what it needs to learn.
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For SARs to achieve greater autonomy, they must be able to
rapidly acquire new concepts and convey the extent of their
knowledge to their teachers.

Interactive task learning (ITL) is a new learning paradigm
that seeks to address this problem [4]. ITL expands LfD to
include natural language and demonstration, aiming to mimic
human learning and more closely integrate the teacher. While
LfD treats the human as an actor or an expert, ITL treats the
human as a teacher who explains the nature of the task and
breaks it down into learnable components. By using natural
language, the teacher can convey knowledge more efficiently
as well as provide a grounding for learned concepts that the
robot can then use to explain its knowledge [5].

Recent works have explored the use of ITL in manip-
ulation tasks [4], [6], [7] but ITL has strong potential to
address open challenges in social robotics. Data-efficiency is
one such challenge for SARs because social interactions are
not easily simulated and require real world data. In a rich
social environment, robots must learn what features to focus
on. This requires crafting feature sets ahead of time (reducing
generalization capability) or learning from raw data using
deep neural networks, which can struggle on limited training
data. Using natural language to teach social robots could
significantly reduce the demonstration data needed because
concepts, rules, and constraints of the task can be directly
described rather than inferred from a large dataset.

However, existing ITL approaches used in physical HRI
are not readily applicable for teaching social HRI. In a
manipulation task, learned concepts usually correlate a word
with a physical object, attribute, or action. In ITL these
concepts are often taught by focusing the robot’s attention
using gestures [8] or physically demonstrating actions. In
most manipulation experiments (e.g. [6], [8]), the environ-
ment has a finite set of objects present, which effectively
constrains the vocabulary used. In contrast, social tasks are
often abstract and difficult to ground. States and actions are
based on the dialogue and not the physical environment.
Therefore concepts must be learned verbally and without the
aid of physical teaching cues. The teaching vocabulary can
be much more open-ended without a physical environment to
constrain it. To provide a reasonable response, a social ITL
system must have robust parsing that can understand a wide
range of commands and vocabulary, which the handcrafted
parsers typically used in ITL may struggle with. Finally,
social tasks may be more difficult to teach to robots than
physical tasks. While physical tasks or games are often
intuitive to break down into rules, steps, and sub-tasks, social
tasks can be much less structured and rely on human intuition
and common sense. To use ITL for social tasks, it must



address this challenge and induce computational thinking in
the human during the learning process.

Additionally, there is a current research gap of understand-
ing how end-users use and perceive existing ITL systems.
How intuitive is teaching with ITL? What mental models do
teachers form about the robot? Do they prefer this learning
paradigm over others like LfD? Some research has investi-
gated human teaching behavior in Wizard-of-Oz studies [9]
as well as virtual studies identifying failure cases [10], but to
the best of our knowledge no existing HRI studies investigate
fully autonomous ITL systems with non-expert users. To
realize the full potential of ITL for social robots, we must
evaluate such systems with non-expert users to investigate
how performant, intuitive, and transparent these systems are.

In this work, we present a preliminary approach to learn
social tasks via ITL and evaluate user perceptions of this sys-
tem with an HRI study. This approach uses recent advances
in natural language processing to adapt to a range of unstruc-
tured language without the need for extensive handcrafted
rules. A learning agent guides the human teacher through
ITL while attempting to induce computational thinking. Our
HRI study compares this system against a pure LfD baseline
on the post-teaching robot performance as well as participant
trust and perceived workload. Using feedback from partic-
ipants and observations from both LfD and ITL teaching
sessions, we identify areas for improving the intuitiveness
and transparency of learning systems for SARs.

II. RELATED WORKS

Given the wide range in applications, LfD has been used
in many works for teaching social robots [1], [2], [11]. How-
ever, demonstrating tasks can take significant time, especially
in complex environments where much data is required to
separate patterns from noise. Language-conditioned learning
seeks to address this problem by generating novel robot
behavior from a verbal command. It has shown great success
in physical manipulation areas [12], [13], enabling robots
to execute complex action sequences in real and simulated
environments from language commands.

While LfD and language-conditioned learning have been
successfully utilized in numerous robotics tasks, many ap-
proaches use an end-to-end neural network design that can
inhibit interpretability and generalization. However, inter-
pretability is especially important for social robots, where in-
appropriate behavior can be particularly detrimental. Global
interpretability helps teachers understand what has been
learned, and local interpretability can improve accuracy and
user trust by rationalizing individual decisions [14]. While a
number of works [15], [16] have explored interpretability in
LfD, a conflict arises between generalization and explanation
quality. High-level, natural language explanations, as used in
[17], are most suitable for non-expert users. However, these
approaches predominantly use end-to-end neural techniques
and can require thousands of labeled explanations of a
task. The end-to-end design also prevents knowledge transfer
between models, as there is no explicit modeling of concepts,

only a latent space. Additionally, because these explana-
tions are labeled and trained offline, such methods cannot
provide interpretability while teaching the robot. Alternative
approaches [15] use inherently-interpretable models, but do
not explain in natural language or high-level concepts, and
therefore are more suitable for expert users.

Given the weaknesses of purely neural methods for in-situ
learning, hybrid approaches combining machine learning and
structured models provide a promising alternative. Walker et
al. [18] propose a language-conditioned learning approach
that utilizes an intermediate logical grammar to enable in-
terpretability and generalization to unseen tasks. Mao et al.
[19] present a neuro-symbolic approach for learning object
relations, maintaining the convenience of end-to-end training
while learning a structured and interpretable model of object
concepts. Language-grounded learning is a hybrid approach
that learns novel concept words (e.g. colors, shapes, and
actions) during LfD. This approach has been used to label
task components [20], learn object and action words [21],
and gain multi-modal concepts via clarification dialogue [8].

ITL is another hybrid approach that fuses elements of LfD,
language-grounded learning, and active learning to learn
tasks as a system of rules and concepts, rather than input-
output black boxes. Several works [6], [7], [22] have utilized
ITL, but these have all focused on learning physical tasks. By
adapting ITL for SARs, these robots will not simply mimic
human behavior, but rather understand the social rules of the
tasks they perform and convey their reasoning to humans.

III. METHODOLOGY

Our approach for learning social tasks via ITL1 consists of
three components: a behavior tree-based learning agent that
generates dialogue, a natural language understanding (NLU)
system, and a synthetic dataset for training the NLU system.
When learning a new task, the learning agent prompts the
teacher with questions about the task. The teacher’s answers
will be processed by the NLU system, which generates a
sub-tree to append to the behavior tree. This process repeats
until the teacher indicates teaching is complete.

A. Learning Agent

The learning agent generates dialogue with the teacher
to learn a behavior tree model of the social task. A task’s
behavior tree can contain sequences and conditionals as
interior nodes, while the leaf nodes are robot speech or
listening behaviors. Sequences can be given the name of
an action such as “greeting the customer”. Starting with
an empty sequence, the learning agent recursively searches
the behavior tree for incomplete sequences or conditionals,
prompting the teacher for additional information until the
teacher indicates the sub-tree is complete. This process
repeats until the entire tree is finalized and the task is learned.
Given the goal of learning from non-experts, it cannot be as-
sumed that teachers will be skilled in computational thinking
(i.e., the ability to break a complex task down into simple

1https://github.com/Intelligent-Robotics-Lab/social-itl.git



components and logic). Accordingly, the learning agent uses
guided prompts to induce computational thinking in the
human teacher. These prompts ask for the next step while
including context about the subtree that is being learned,
such as the name of the sequence being learned, the current
conditional statement, or the previous learned action. If the
NLU system cannot understand the teacher’s response, the
learning agent indicates a failure and re-delivers the prompt.
If the NLU system misunderstands, the teacher can indicate
the misunderstanding and the learning agent will apologize
and backtrack in the learning process appropriately.

B. Natural Language Understanding

The NLU system parses speech received from the teacher
into a computational representation which can be used to
build behavior trees. All input utterances are first classified
as one of 6 possible intents: confirmation, denial, uncertainty,
indication of speech misrecognition, task-relevant instruc-
tions, and completion of the task. We utilize SimCSE [23] to
vectorize the input utterances and fit a weighted K-Nearest
Neighbor classifier (k=5) on a set of sample utterances.

For any utterances that are classified as task-relevant in-
structions, the system parses a computational representation
that can be returned as a sub-tree to the learning agent. We
utilize a semantic parser based on a combination of the BERT
[24] and T5 [25] language models. Using a similar technique
to [18], a BERT model with a token classification head masks
out portions of the teacher utterance referring to quotes that
the robot should say or might expect a customer to say.
This significantly reduces the variance in input utterances,
making it easier for the parser to learn and generalize. The
masked utterance is passed to a T5 sequence-to-sequence
model, which converts the utterance to a computational parse.
The parser is trained to parse the following constructs:

• if(x, y): if x condition, do y
• heard(x): return True if person says x (or something

similar) to the robot
• say(x): say x to the person (x is a direct quote)
• tell(x): tell the person x (similar to say, but requires

rephrasing to the robot perspective)
• ask(x): ask x to the person
• resolve(x): perform the action x

To prevent the T5 model from generating unpredictable re-
sults, the decoding vocabulary is restricted to tokens present
in either the input sequence or the set of constructs listed
above. Next, the masked portions of the parse are substituted
with their original utterance segments to obtain a complete
parse. However, some instructions contain language that must
be converted to the robot’s perspective for a live interaction
(e.g. tell(“that they can leave their key on the desk”) should
be converted to say(“you can leave your key on the desk”)).
We utilize a GPT-J language model with a prompt to rephrase
all utterances to the robot’s perspective. After finalizing the
parse, the NLU system converts the parse to a sub-tree of
behaviors and returns it to the learning agent.

Fig. 1. Example Prompts from the learning agent: after prompt 1 a speech
behavior is added, after prompt 2 a conditional is added with a new “check
in” sequence as a child, and after prompt 3 the “check in” sequence is filled
in with a speech behavior.

C. Synthetic Dataset
Given the difficulty of collecting and labelling a large

dataset of teacher instructions and parses, we use a synthetic
dataset for training the NLU system. First, we form sets of
template phrases corresponding to the constructs in III-B;
these can be found in the source code. We source names
of actions for resolve() from a WikiHow dataset [26] and
sample dialogue for heard(), say(), tell(), and ask() from the
DailyDialog corpus [27]. Sentences and parses are generated
by recursively substituting actions and dialogue into these
template phrases. In total, 10,000 pairs of sentences and
parses are generated for training the NLU system.

D. Task Execution
To perform the task after teaching, the robot ticks through

the behavior tree. When arriving at a heard(x) behavior, the
robot listens for a customer response and utilizes the sentence
vector cosine distance to determine if the distance from
phrase x is > 0.4 (an empirically determined threshold),
and returns Success if true and Failure otherwise. If heard(x)
fails, subsequent heard(x) behaviors will not stop to listen to
the customer until either a heard(x) behavior returns Success
or an else statement is reached. This design enables a fallback
flow where a single robot listen can be matched against
multiple phrases x1, x2, ..., xn When the end of the behavior
tree is reached, execution repeats from the beginning.

IV. EXPERIMENTS

A. Study Design
To evaluate the performance of our system, we designed

an HRI study where participants teach a Furhat social robot
(named Alpha) to be a hotel concierge. We utilize a within-
subjects design where participants taught the hotel concierge
task to the robot with the proposed ITL system (Figure 3) and
again with LfD. The presentation of conditions was balanced.



Fig. 2. Instruction parsing system with learning agent

1) Participants: We recruited 16 native English speakers
as study participants. Two participants were excluded due to
system errors. Of the remaining 14, there were 6 females
and 8 males, with a mean age of 32.1 years (σ = 15.56).

2) Procedures: Before beginning LfD or ITL, a researcher
demonstrated how to teach the robot a separate sub-task
(assisting the guest with towels), which included showing
how to correct a misunderstanding. Participants could request
that the demonstration be repeated at any point in the
experiment. No further guidance was given for teaching the
robot with ITL, as we wanted to investigate the intuitiveness
of this learning system without external help. Participants
were then provided with a paper task description for a hotel
concierage job, which consisted of 6 main sub-tasks: greeting
the guest, checking in the guest, assisting the guest with lug-
gage, checking out the guest, providing information on hotel
amenities, and providing information on local restaurants.

The participants were then asked to teach the robot this
task. While teaching under both conditions, participants had
access to the task description and a touchscreen displaying
the conversation history, enabling them to better detect
automatic speech recognition (ASR) errors and review what
was already taught. Participants were instructed that the robot
should perform these sub-tasks based on the hotel guest’s
needs and not simply one after the other. This provides a
hint to include conditional logic when teaching the robot.
After teaching, they played a hotel guest to assess the
performance of the robot. Based upon their impression of
the robot’s performance they could choose to re-teach the
robot. In the ITL condition, re-teaching involved starting
from the beginning, while in the LfD condition it consisted
of providing more demonstrations to the existing model.

B. LfD System

In the LfD scenario, the participant played the role of
the robot while a researcher acted as the hotel guest. The

concierge task was then taught by mock dialogue between
them. The participant was responsible for designing both
the hotel guest and concierge script to avoid the researcher
biasing the dialogue. Participants could practice demonstra-
tions with the researcher before recording data for LfD.
They could test the LfD model by acting as a customer and
interacting with the robot concierge running the model. This
allowed them to identify undemonstrated states or corrupted
actions and provide more demonstrations as needed. The
robot’s included microphone array allowed for separating
the dialogue of the two speakers; this worked well but
occasionally matched speech to the wrong speaker, especially
short responses. To learn a policy, we utilize a similar
approach as [11] and [1], but our method is designed for one-
shot learning from demonstration so that it can be completed
in the same amount of time it takes to teach with ITL
(∼15 minutes for the six sub-tasks). This approach omits the
clustering used in the prior approaches and uses a nearest-
neighbor approach to select the current robot action at based
upon the last robot action at−1 and the guest’s response to
it, st. We define the distance d between such (a, s) pairs as:

d((a1, s1), (a2, s2)) = 0.2 ∗ ∥v(a1)− v(a2)∥
+0.8 ∗ ∥v(s1)− v(s2)∥

(1)

where v() denotes the sentence vector computed by SimCSE.

C. Evaluation Procedure

In this experiment we evaluate the performance of both
learning models and compare participants’ trust in the robot
and perceived workload between the ITL and LfD conditions.

1) Performance Evaluation: To measure performance of
the models, each participant (except the final participant)
played a customer while interacting with the LfD and ITL
models trained by the previous participant. Two human



Fig. 3. Teaching the Furhat robot with ITL

coders labeled each robot action as appropriate or inappro-
priate based on the customer’s responses. They also labeled
the category of action the robot should perform, either one
of the six sub-tasks or an “other” category for general
dialogue such as “you’re welcome”. Participants and coders
were unaware which teaching method was used to train the
model. Actions where the robot repeats ASR errors from
the training procedure (e.g. would you like to check it vs.
would you like to check in) were coded as “appropriate w/
ASR error” because they could be eliminated with improved
ASR. Sections with low agreement were cooperatively re-
coded. The final Cohen’s kappa agreement for was 0.91 for
category and 0.90 for action appropriateness.

2) Participant Attitudes: We investigated participants’
trust towards the robot and perceived workload in both teach-
ing scenarios. Trust was measured using the abbreviated 14-
item version of the Trust Perception Scale-HRI questionnaire
[28]. Perceived workload was measured using the NASA-
TLX scale [29]. Both questionnaires were administered
immediately after participants taught and tested their own
model under the respective LfD/ITL condition, but before
evaluating the previous participant’s model. We also asked
participants to select which teaching style they preferred and
describe their reasons why. Finally, we asked them to rank
their computer programming experience on a 5 point scale.

V. RESULTS

A. Questionnaire

The results of our HRI questionnaires are illustrated in
Table I and Figure 4. Trust in the LfD condition (70.4%) was
higher than in the ITL condition (64.3%), but using a paired
t-test we found this effect was not significant (t(13)=1.70,
p=0.11). Perceived workload was non-normal, so we utilized
a Wilcoxon signed-rank test to analyze the difference. Work-
load was higher under the ITL condition (55.5%) than the
LfD condition (46.8%), but this effect was also not significant
(Z=-1.02, p=0.15). More participants indicated a preference
for LfD (9) than ITL (5). To analyze whether computational
thinking correlated with these metrics, we compared the
relative difference of trust and workload between the two
conditions against participants’ self evaluated programming
experience using a Spearman correlation test. There was
no correlation between programming experience and trust
differences (p=0.38) or workload differences (p=0.45).

Fig. 4. Distributions of Trust, Workload, and Total Performance

TABLE I
QUESTIONNAIRE RESULTS

Trust % Workload % Preferred Teaching Method

µ σ µ σ

LfD 70.4 14.9 46.8 15.1 9

ITL 64.3 14.7 55.5 9.9 5

B. Performance Results

The results of our performance evaluation are shown in
Table II and Figure 4. For each participant, we compute the
percentage of appropriate actions, including and excluding
ASR errors, for each of the 7 action categories. The category
scores of each coder are averaged for each participant. A
participant’s total score is defined as the mean of these 7 cat-
egories. The categorical and total scores in Table II represent
the mean of each participant’s categorical and total scores.
This mean-of-means design ensures even weighting among
participants with varying amounts of evaluation dialogue.

In total, our performance data consists of 372 actions. ITL
performance (47.6%) is higher than LfD (39.3%), but when
disregarding ASR errors the LfD system slightly outperforms
the ITL system (60.8% vs. 54.5%). However, neither of these
differences were found to be significant. As shown in Figure
4, there is high variance with both teaching styles, with some
teachers achieving near-perfect performance while others had
zero performance. Spearman tests did not show correlation
between programming experience and performance (ignoring
ASR errors) with ITL (p=0.84) or LfD (p=0.72).

TABLE II
PERFORMANCE RESULTS

% of Appropriate Actions % of Appropriate Actions
ignoring ASR Errors

ITL LfD ITL LfD

Greeting 72.9 60.0 72.3 66.2

Check In 51.0 34.6 57.3 69.6

Luggage 38.5 45.0 38.5 54.0

Check Out 45.8 51.8 46.3 56.9

Amenities 25.0 4.2 44.4 62.5

Restaurants 33.3 55.1 54.2 82.1

Other 67.3 9.5 67.3 9.5

Total 47.6 39.3 54.5 60.8



The differing performance across sub-tasks reveals some
of the relative strengths of ITL and LfD. Amenities is a
task with complex vocabulary: this task illustrates how ITL
enables better correction of ASR errors. Meanwhile, simple
tasks like Greeting (where ASR errors are uncommon) show
less difference between ITL and LfD. Sub-tasks appear in
Table II in the same order as the task description provided
to participants, and many participants chose to teach in this
order. The decreased accuracy for later tasks such as Ameni-
ties and Restaurants illustrates the problem of unintended
temporal dependency, discussed in section V-D.2.

C. Participant Feedback

As shown in Table I, participants mainly preferred LfD
over ITL. In the free-response questions, those favoring
LfD largely cited ease of use (n=8) and better evaluation
performance (n=5) as their reasons. Of those favoring ITL,
most indicated it provided greater learning transparency
(n=3) and enabled improved performance by correcting ASR
errors (n=3). Individuals from both groups said that ITL had
a higher learning curve (n=9), but for some the potential for
increased performance outweighed this. As one participant
shared, “[with ITL] I feel like even though I was unsuccessful
in training the robot, it would be more likely to perform
appropriately when trained successfully.”

D. Teaching Analysis

We reviewed the transcripts of participants teaching the
robot to identify successes and challenges in each condition.

1) Successful Teaching: With LfD, the most successful
teachers demonstrated a reasonable range of hotel guest
intents and responses. These teachers avoided ASR errors
by speaking clearly and pausing between dialogue turns.
They also utilized the tablet interface to identify ASR errors
immediately and correct them with more demonstrations.

With ITL, successful teachers used conditional statements
well to model different conversational branches. They under-
stood when a conditional should end, meaning the underlying
behavior tree was wide and only had nested behaviors where
necessary. They also developed a model of what phrases the
robot could and could not understand (sometimes remarking
out loud) and phrased commands accordingly. If the robot did
not understand, the teacher explored different phrasing styles.
Patience also contributed to successful teaching: several
participants had low performance on their first attempt but
significantly improved with another teaching session.

2) Failure Modes: When participants struggled to teach
the robot, we identified the following patterns:

Technical Challenges: A common challenge was uncor-
rected ASR errors. In both conditions the robot sometimes
heard incorrectly, but in LfD the robot could also assign
utterances to the wrong person. Teachers corrected ASR
performance more often with ITL than LfD, likely because
misunderstandings were more immediately apparent in ITL
as the robot would always repeat back its understanding of
the teacher’s instructions. While some participants achieved
better performance through ITL by resolving ASR errors,

participants who focused too much on ASR errors could
get stuck in failure loops. The robot could not understand
some phrases even with perfect enunciation, but teachers
made repeated attempts (as many as 7) to notify the robot it
misunderstood and retry, rather than simply continuing with
teaching. Teachers also tried to tell the robot to replace an
individual word, but the learning agent could only replace
full utterances. One participant suggested typing as a much
less frustrating alternative. Such failure loops seemed to
increase frustration and wasted time that could otherwise be
spent improving the robot’s task model.

Computational Thinking Challenges: Several partici-
pants failed to teach the robot to respond dynamically, so the
robot simply listed off information without first listening for
a customer’s needs. This failure occurred in both LfD and
ITL, but more frequently in ITL. One common difficulty
with LfD was forgetting about undemonstrated states. For
example, many participants started by asking “would you
like to check in?” and acting out the scenario where the
hotel guest said yes, but forgot to demonstrate a scenario
where the guest said no. Such difficulties were not present
under ITL, as the robot explicitly asks about else conditions.

Mental Model Mismatches: The most common struggle
with ITL was failure to understand the temporal constraints
of the behavior tree that was being generated. Despite the
design of the learning agent prompts to induce computa-
tional thinking, many teachers created undesirable temporal
dependencies. For example, the robot might only provide
information on hotel amenities immediately after a guest asks
about check in; if the guest does not ask about check in
that part of the behavior tree remains inaccessible. In several
participants this was so prevalent that the robot could only
perform the initial behavior (check in) successfully. Another
type of failure was when participants over-simplified the task
to an extent the ITL algorithm could not understand. For
example, “‘What should I do next?’, ‘Listen for a response’,
‘How do I listen for a response?’, ‘Wait for the guest
to say something’, ‘How do I wait for the guest to say
something?’, ...” In some cases, the participant was frustrated
enough to give up before teaching all 6 sub-tasks, causing
low performance. Some teachers also tried to teach slot-
filling behaviors to the robot, such as asking for the guest’s
name and reusing that information later in the dialogue, but
currently the ITL system does not support this.

VI. DISCUSSION

In this work, we present a novel approach to learn social
interactions via interactive task learning and conduct an
exploratory study to compare the performance and teacher
perceptions of the system against an LfD approach. We
did not find significant differences in workload, trust, or
performance between the two systems, but this experiment is
limited by the small sample size and large variance. Nonethe-
less, the HRI study performed in this work sheds light on
how humans attempt to teach social tasks via ITL and areas
for improvement. We did not observe correlations between
computer programming experience and trust, workload, or



performance in either condition, which could suggest com-
putational thinking is not the main obstacle for ITL teaching.
Rather, faulty mental models of the robot’s knowledge may
be limiting for programmers and non-programmers alike.

From an algorithmic standpoint, the NLU system can
be enhanced to improve the robot’s capabilities and reduce
teaching difficulties. Although the study focused on simple
static behaviors, real-world interactions require a robot to
store information (such as names) and adapt phrases ac-
cordingly. We leave such learnable slot-filling NLU features
for future work. Similar frustrations with ASR have been
observed in conversational computer programming systems
[30]. Enabling word-level instead of sentence-level ASR
correction could reduce frustration, save time, and enhance
system performance. Moreover, training the NLU system to
detect faulty mental models would allow the learning agent
to address misunderstandings, preventing a failure loop.

Additional methods for improving teachers’ mental model
could also be investigated. The common issue of uninten-
tional temporal dependencies could likely be resolved by
better prompting. For example, adding a prompt such as
“Should I do behavior x only as part of behavior y, or any
time z happens?” could significantly reduce such failures.
Utilizing visual aids beyond a basic transcript, such as a
simplified abstraction of the model/behavior tree, could also
aid teachers in understanding the robot’s task model [30].

Finally, a hybrid approach involving LfD and ITL could
combine the best parts of both methods. LfD could present
a simple way of initially teaching, and ITL could be used to
clarify temporal dependencies and fix ASR errors. Humans
naturally utilize such a multi-modal teaching approach with
each other, which could make a hybrid learning approach a
more natural and intuitive way to teach social robots.
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