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Learning Turn-Taking Behavior from Human Demonstrations for
Social Human-Robot Interactions
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Abstract—Turn-taking is a fundamental behavior during human
interactions and robots must be capable of turn-taking to interact
with humans. Current state-of-the-art approaches in turn-taking
focus on developing general models to predict the end of turn
(EoT) across all contexts. This demands an all-inclusive verbal
and non-verbal behavioral dataset from all possible contexts of
interaction. Gathering such a dataset may be infeasible and/or
impractical before robot deployment. More importantly, a robot
not only needs to predict the EoT but also needs to decide on
the best time to take a turn (i.e. start speaking). In this research,
we present a learning from demonstration (LfD) system for a
robot to learn from demonstrations, after it has been deployed,
to make decisions on the appropriate time for taking a turn
within specific social interaction contexts. The system captures
demonstrations of turn-taking during social interactions and
uses these demonstrations to train a LSTM RNN based model
to replicate the turn-taking behavior of the demonstrator. We
evaluate the system for teaching the turn-taking behavior of an
interviewer during a job interview context. Furthermore, we
investigate the efficacy of verbal, prosodic, and gestural cues for
deciding when to begin a turn.

Index Terms—Learning from Demonstration, Social Human-
Robot Interaction, Nonverbal Behavior, Turn-taking

I. INTRODUCTION

Communicating with humans is a fundamental skill required
of social robots. Humans communicate and interact through
both verbal and nonverbal behaviors, and social robots should
be equipped with human-like behaviors if we want them to
interact naturally with humans [1]. Turn-taking is an especially
essential nonverbal behavior used between humans because
it enables fluid conversations [2]–[5]. This is because when
a speaker takes the conversational floor at an inappropriate
time it can disrupt the flow of a conversation [6], [7]. Namely,
there are three ways to disrupt the flow of a conversation when
inappropriately taking the conversational floor: 1) speaking
before a turn has ended (interruption, overlap), 2) speaking
too early after a turn has ended (short gap), or 3) speaking
too late after a turn ended (long gap). These situations lead to
the conversational partner perceiving the speaker’s behavior as
inappropriate due to the speaker not actively listening or not
knowing when to take the conversational floor [4], [7], [8].

Context is important in turn-taking because it influences the
appropriate time for a person to take the conversational floor [3],
[4], [9]. Social interaction context is defined as any information
that can be used to characterize a social interaction such
as the social status, interaction goals, personalities, cultures,
verbal and nonverbal behaviors, time, and environment of the
interaction [10]. The influence of context can be exemplified
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by contrasting turn-taking behavior within a structured setting,
such as an interview context, to turn-taking behavior in a
less structured controversial debate. In an interview context,
participants will seldom interrupt each other because doing
so would be considered unprofessional. In contrast, in a
controversial debate it is often more common and acceptable
to interrupt the other speaker without waiting for them to
finish their turn because participants are more prone to voicing
their opinion or refuting the other’s claims. In these examples,
the social norms of the context affect participants’ turn-taking
behavior [3], [4], [11]. Hence, it is vital that social robots exhibit
context-specific turn-taking behavior so they can effectively
and efficiently interact with humans according to the context
of the social interaction [11]. However, it is infeasible to pre-
program the turn-taking behavior of a social robot for all the
potential social interaction scenarios it will face prior to it
being deployed.

Computational models of turn-taking behavior are rapidly
advancing from prior approaches that only considered single
feature vectors over a brief window of time to identify a
speaker’s End of Turn (EoT) [7], [12]. These recent research
works utilize state-of-the-art machine learning techniques such
as Long Short-Term Memory (LSTM) Recurrent Neural Net-
works (RNNs) [13]–[15] and Transformer-based architectures
[16] to model turn-taking behavior. These models are often
trained on datasets gathered within specific social interaction
contexts such as the MapTask corpus [12]–[14], [17], puzzle
solving corpus [15], or a variety of human-robot interaction
(HRI) scenarios [16], [18]. However, a general turn-taking
model that could be applicable to all possible contexts has yet
to be achieved and models trained from data gathered in one
context (e.g., MapTask) cannot be utilized in contexts it has not
been trained on (e.g., HRI) [13]. It is also infeasible to predict
all the potential social interaction contexts a social robot may
face prior to deployment. Hence, there is currently an open
opportunity to develop an approach to rapidly teach a robot
context-specific turn-taking behavior after it has been deployed.

Learning from Demonstration (LfD) enables non-technical
experts to teach a social robot new behaviors or tasks after it
has been deployed [19], [20]. LfD has primarily been used to
learn high-level social tasks, such as facilitating Bingo or robot-
mediated therapy, and discrete robot actions such as a greeting
[21]–[23]. Namely, LfD enables humans to demonstrate their
ideal behaviors in a distinctive social interaction context, and
then teach the robot how to exhibit the ideal behavior in a
similar context. Furthermore, teaching a robot to partake in
a social interaction using LfD provides it the opportunity to
implicitly capture and understand the context of the situation.
Hence, LfD could be a potentially effective approach for
teaching a social robot context-specific turn-taking behavior.
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This can be accomplished by training turn-taking models
utilizing human demonstrations of the nonverbal behavior in
a specific context. However, to date there has been limited
research in learning nonverbal behaviors (e.g., turn-taking)
from human demonstrations.

In this paper, we present a LfD system for a human
to teach their ideal turn-taking behavior within a specific
social interaction context via demonstration and enable a
robot to exhibit the turn-taking behavior within a similar
context. Namely, we use LfD to capture a demonstrator’s
context-specific turn-taking behavior in response to the verbal,
prosodic, and gestural cues of the individual they are interacting
with during a specific social interaction context. External
observation based LfD is used to gather verbal, prosodic, and
gestural data by observing and recording a demonstrator’s
turn-taking behavior during a human-human interaction. This
demonstration data is then utilized for training a LSTM RNN
to model the demonstrator’s turn-taking behavior. The model
can then be applied to a robot to exhibit context-specific turn-
taking behavior during a human-robot interaction by utilizing
the verbal, prosodic, and gestural cues of the human interaction
partner. We evaluate the performance and efficacy of this LfD
system in a dyadic job interview scenario.

Overall, this paper has three primary research contributions.
First, we present a LfD system which learns nonverbal behavior
from human demonstration. Second, we extend prior turn-taking
models by learning from demonstration context-specific turn-
taking behavior from a limited number of demonstrations. This
contrasts prior work that trains a single model of turn-taking
behavior on a large dataset containing a variety of contexts
and attempts to generalize to new contexts; but the results of
these models have performed poorly in these new contexts
[13], [18]. Third, we extend current research on turn-taking for
chat bots and conversational agents to robots and investigate
the effect of verbal, prosodic, and gestural cues on predicting
the appropriate time for a robot to take the conversational
floor. Namely, current research for chat bots and conversational
agents only utilize verbal and prosodic cues to predict an EoT
during human-computer interactions and do not consider when
is the most appropriate time to take a speaking turn while
considering context-specific social norms [9].

II. RELATED WORKS

Current state-of-the-art turn-taking approaches aim to learn
a predictive and general model of turn-taking that can be
applicable to all contexts by training a model with datasets
containing a single or several contexts of conversational turn-
taking [13], [14], [16], [18]. Namely, current predictive turn-
taking models aim to predict a speaker’s end of turn so
that the model can be applied alongside other algorithms to
determine the appropriate time for an agent (e.g., robot, chatbot,
conversational agent) to take a speaking turn.

In [13], a LSTM RNN model was trained on the MapTask
[17] dataset for predicting an end of turn and generalizing turn-
taking predictions to new contexts. In the MapTask scenario,
one adult was assisting the other adult to reproduce a map
of landmarks and routes. The dataset included 18 hours of

spontaneous speech that was recorded from 128 two-person
conversations involving 64 different speakers (32 female and
32 male adults), and the average dialogue length during a
conversation was 6.7 minutes. A combination of the final Part
of Speech (POS) tags and prosody features were used to train a
LSTM RNN model. The trained model was then evaluated on
a subset of the Map Task dataset and a HRI dataset consisting
of a robot actively listening (e.g., providing backchannels and
follow-up questions) to users while they recounted their past
travels. Results of the evaluation demonstrated that the LSTM
RNN model outperformed the traditional silence-based and
Inter-Pausal Units (IPU)-based models in predicting turn-shifts.
However, the model could not accurately predict turn-shifts in
the context it was not trained on (i.e., the HRI dataset) and
the authors noted that a training set more similar to the test
set is likely needed [13].

In [14], a larger RNN model with multiple LSTM layers
was again trained on the MapTask dataset. Using only prosodic
cues from the speaker, the trained model was more accurate in
predicting the EoT than the model presented in [13]. The turn-
taking model was also retrained on a Japanese version of the
MapTask dataset and a telephone call dataset consisting of five
different languages to investigate the effects of language on the
model’s performance. The model accurately predicted end of
turns across four languages but did not accurately predict end
of turns in Japanese. This suggests that prosodic features alone
cannot predict EoTs in Japanese. The authors further elaborated
that due to the wide variability in turn-taking, future work has
the potential to improve performance by rapidly learning a
novel style of interaction.

In [18], a study was conducted to investigate differences in
the ability of LSTM RNN models to predict an EoT when
trained on a dataset containing multiple contexts versus training
on data collected in a specific context. A total of 105 human-
robot interaction sessions were conducted with participants over
a wide range of ages and backgrounds. Scenarios included a
robot interviewing participants as candidates for a job (30
sessions), actively listening to participants (20 sessions), acting
as a secretary during interactions with participants (19 sessions),
acting as a single woman during a speed-dating scenario with
participants (32 sessions), and guiding participants through a
tour of a lab (4 sessions). The LSTM RNN models were trained
using only prosodic features, only linguistic (verbal) features,
or a fusion of the two features. The results of their study found
that a model trained on all the aforementioned scenarios using
verbal and prosodic features performed better than models
trained in a single specific scenario when the context of
interaction was closely related in structure (i.e., interview, speed-
dating, secretary, active listening) to the scenarios found in the
aggregated dataset but performed worse when the scenario’s
structure (i.e., job interview) was not close to those found in
the aggregated dataset. The authors further elaborated that a
generalized turn-taking model based on a large dataset is more
suited for unstructured informal conversation, and structured
task-dependent conversation would require training a model
with data derived from the context to perform successfully.

TurnGPT [16] is an adaptation of Open AI’s GPT-2 [24]
and a transformer-based model [25] for turn-taking. The
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TurnGPT model was trained with eight verbal datasets includ-
ing: transcripts of dialogues between humans and automated
assistants, human-human written dialogues, and scripts from
the MapTask and Switchboard corpus. Compared to POS
model and text-based LSTM baselines, the TurnGPT model
significantly outperformed both in prediction of EoTs. This
advantage can be attributed to the fact that this model not
only considers completion of a turn syntactically but also
considers the pragmatic completion of a turn. However, the
Turn-GPT model is designed for text-based data and lacks the
important concept of time (i.e., when to take a turn given a
high probability EoT word), which is an important ability for
spoken dialogue.

Overall, current state-of-the-art research have defined the
turn-taking problem as prediction of the EoT and having an
agent take a turn as soon as a speakers turn has ended [13]–[16],
[18]. Such an approach does not enable a robot to determine
when is the appropriate time to take a turn within a specific
context because taking a turn immediately after someone speaks
may not always adhere to human social norms [9], [18]. Namely,
it is uncommon in human-human interaction for a speaker to
immediately respond without any gaps (i.e., pauses) in speaker
turns [8]. Current approaches have also focused on learning
turn-taking models which generalize to many different contexts
[13], [16], [18]. However, the results of these models have
demonstrated that models trained on data from one context do
not generalize to contexts that they have not been trained on and
often perform worse than models trained on data specifically
gathered from the context [13], [18]. Lastly, current models
determine an upcoming EoT using inputs including: verbal [16],
prosody [14], and a combination of verbal and prosodic cues
[13], [18]. To the best of our knowledge, the combination of
verbal, prosodic, and gestural cues in detecting turn-shifts has
yet to be explored. Studies on human behavior have found that
gesture could be a potentially useful cue for identifying whether
a speaker is holding the conversational floor [9], [26]–[28].

In this work, we address the aforementioned gaps in existing
approaches on turn-taking by investigating the impact of gesture,
verbal, and prosodic cues on the performance of a turn-taking
model and developing a LfD system which accomplishes the
following: 1) learning context-specific task-oriented turn-taking
from human demonstrations and 2) learning when to take a
turn instead of only predicting when a turn has ended.

III. LEARNING FROM DEMONSTRATION SYSTEM

Our LfD system for a social robot to learn turn-taking models
within a specific context is presented in Figure 1. The LfD
system first gathers demonstrations of turn-taking during dyadic
human-human social interactions within a specific context. The
demonstrations are then used to train a LSTM RNN turn-taking
model utilizing verbal, prosodic, and gestural cues to make
a decision on the appropriate time for a robot to take the
next turn in the demonstrated context. This model can then be
implemented on a social robot to identify the beginning of its
turn to speak when it takes on the role of one of the individuals
within the dyad for the demonstrated context. Namely, while
predicting the EoT is the ultimate goal of current turn-taking

TABLE I: Set of Interviewer Behavioral Questions

1 How are you today?
2 Tell me about yourself.
3 Are you good at working in teams?
4 Can you make decisions quickly?
5 What kind of skills do you think are important in research?
6 Are you quick in completing tasks?
7 Why do you find social robotics interesting?
8 Would you please tell me about your strengths?
9 Would you like to discuss some of your weaknesses?

models, our LfD system is able to learn a demonstrator’s
decision-making process on when to take a speaking turn
during a conversation in a specific context.

A. Human-Human Demonstration Data Gathering

Our setup for gathering demonstration data during dyadic
human-human social interactions within specific contexts
is depicted in Figure 1. In our setup, the two individuals
are standing and facing each other during a natural social
interaction. During the interaction two Microsoft Kinect depth
cameras, one directed at each individual, are being used
to record both participants’ skeleton joint locations. Each
individual is also wearing a lapel microphone which captures
their audio during the interaction.

B. Job Interview LfD Scenario and Dataset

We utilize a job interview scenario as a representative
example of a dyadic interaction where our LfD system could be
applied. The procedures for collecting this dataset with our LfD
system were reviewed and approved by the Institutional Review
Board at Oakland university (#IRB-FY2022-103). Written
informed consent was obtained from all participants prior to the
commencement of the data collection and participants could
withdraw from the data collection at any time.

We had one person (32 years old, male, and English speaker)
act as an interviewer in order to replicate a user demonstrating
a new turn-taking behavior to the robot within a specific
context. The interviewer had a set of nine behavioral interview
questions (Table I) which the interviewer could naturally
vary in phrasing. The interviewer conducted interviews with
undergraduate students using the set of behavioral questions as
well as greeting and closing statements. Each undergraduate
student participated in three interview sessions. The students
were not provided any specific prompts on how to answer the
interview questions other than to answer them naturally.

A total of five students were interviewed. The students were
all English speakers with an age range of 21-24 years old
(µ = 22). There were three male and two female participants.
The average duration of the interviews was 1 minute and
52 seconds and the entire dataset included 28 minutes and 7
seconds of dyadic conversations. In total there were 150 turns
taken within the dataset. A sample of data from the interview
dataset collected using our LfD system is presented in Figure 2.

C. Feature Extraction

The features for our model can be divided into 3 categories:
verbal, prosody, and gesture. All features are time-synchronized
and sampled over 50 millisecond frames. Verbal features are



4

Human-Human Demonstration
Turn-Taking Behavior for a 

Human-Robot Social InteractionWould you please tell me
 about your strengths?

I think mainly 
I'm a quick decision
 maker and I enjoy 
learning new things.

Model 
Learning

Microsoft Kinect
Cameras

MicrophoneMicrophone

Fig. 1: Overview of the proposed LfD system for learning turn-taking behavior from human demonstrations.

Fig. 2: A sample of data from the interview dataset collected using
our LfD system

generated by applying an Automatic Speech Recognition (ASR)
service, Google Speech-to-Text, to raw audio data and obtaining
timestamped transcriptions as well as word-level confidences.
These transcriptions often contained misrecognitions and we
do not correct these so as to preserve the unlabeled as well
as LfD nature of our data gathering. These transcriptions are
then input to a TurnGPT model which has been pre-trained
on the turn-taking datasets used in [16]. The output is a score
for the probability of a word being an EoT. The scores on a
word being an EoT are used as features for all frames after the
speaker has uttered the word and before the end of the next
word-level utterance. This choice simulates a causal, real-time
system, where the features could not be computed until ASR
outputs a word. The final verbal features for our model are the
time-transformed ASR confidence and TurnGPT score.

For interviewee prosody features, we utilize a modified
feature set found in [13] which included: voice activity, pitch,
energy, and spectral flux. Voice activity was derived from the
ASR system. The other features were computed using librosa
[29] and z-normalized per speaker. Note that we use spectral
flux rather than the spectral stability used by Skantze [13]
because Ward [14] achieved better results using flux rather
than stability.

Finally, we derive interviewee gesture features via principle
component analysis (PCA). The skeleton joint positions of the
interviewee are first transformed to be relative to the torso
frame. We sample the 3D euclidean position of both hands,
both elbows, and the head and z-normalize these 15 features.
We then perform PCA to reduce the dimensionality of the
features to obtain five output features.

Feature Extraction

Input

LSTM RNN 
Layer

1 1 0 0 0 1 1 1 1 1 1 1 1 0 0

 I think mainly I'm a quick decision maker and I enjoy learning new things.Verbal

Prosody

Gesture

50ms

Fig. 3: Turn-taking model architecture

D. Turn-taking Model Architecture

Once the features have been extracted from the dataset, they
are utilized to train a LSTM RNN based turn-taking model,
Figure 3. Our model consists of one LSTM layer with fifteen
hidden neurons per an LSTM cell. The outputs of the model are
probabilities that the interviewer should speak in each frame
(i.e., 50 milliseconds) for the next three seconds. Each frame
comprises 50ms of data and we use sixty such frames for a
total of 3 seconds of decision making time. The LSTM output
is transformed to the 60-dimensional output vector via a fully
connected layer. Both our recurrent and fully connected layers
use sigmoid activation functions. Our LSTM inputs use a tanh
activation function.

E. Model Training

We employ k-fold cross validation to train the model and
split our dataset of five speakers into four training samples
and one test sample. This is due to the relatively small size
of our dataset (28 mins) in comparison to typical turn-taking
datasets (e.g., the popular Switchboard dataset which contains
240 hours of data [30]). In contrast to prior work that train
models for both speakers on the dataset, we train our model
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from the perspective of a single speaker (i.e., the interviewer).
The verbal features of both speakers are input to the TurnGPT
model so its internal state can gain context from both sides
of the conversation. However, the verbal features from the
interviewer’s current speaking turn is masked out from the
output of TurnGPT because it would not be available while
making a real-time decision on turn-taking for the interviewer.
For prosody and gesture, we use only the features from the
interviewee. These model design/training decisions ensure
that the output of the model (i.e., turn-taking decision) is
only determined by information available to the interviewer
including history of the conversation and interviewee verbal
as well as nonverbal behaviors. Specifically, our loss function
targets the demonstrator’s (interviewer) decisions on taking
the turn for training the model while the loss function for
current state-of-the-art turn-taking models target the EoTs in
the dataset.

Given the small size of our dataset, we select hyperparame-
ters that minimize the chance of overfitting. We train for 60
epochs using a batch size of 4 and a learning rate of 0.005.
We use a 0.2 dropout on the LSTM inputs but do not apply
dropout on recurrent connections. We also apply 0.001 L2
regularization on the LSTM and output layer weights to reduce
overfitting. We use a loss function of mean squared error for
training. To divide our data into training samples, we select
windows of 10 seconds, using features from the first seven
and labels from the last three. We designed our models in
Tensorflow and trained our models on a 32-core AMD Ryzen
CPU with 128 GBs of memory. The average model training
time was 76 minutes.

F. Turn Decision Making

The output of the learned LSTM Model only provides
probabilities on whether the interviewer should speak for each
frame over the next 3 seconds. However, the choice in making
a turn is discrete. Herein, we make discrete decisions with our
model by first accumulating the predictions over a fixed time
window of past predictions. Formally, this can be defined as:

predi = (

size∑
n=0

pt
i−n

ti )/size (1)

where predi is the probability of whether to take a turn in the
current frame i, size is the number of frames of past predictions
to accumulate, and pt

i−n

ti is the probability predicted at frame
ti−n of whether to take a turn at time frame ti. In this case, a
small window size of 10 frames (i.e., 0.5 seconds) will take into
account more short-term predictions and be more responsive,
whereas a larger window of 3s will take into account more
long-term predictions, thus having a filtering effect on any
short-term variance. Applying a threshold to predi will then
allow us to make a discrete decision to take a turn or not.

IV. EXPERIMENTS

We evaluate our systems ability to learn a model that
replicates a demonstrator’s turn-taking behavior within a dyadic
social interaction utilizing an ablation test and F1 scores.

A. Ablation Test

We evaluate how different features contribute to turn taking
and identify the best performing model by conducting an
ablation test while using Mean Absolute Error (MAE) as
our measure of performance. We evaluated models using
silence, verbal, prosodic, and gestural cues, as well as different
combinations of these cues. All models included silence (VAD)
as a feature due to its critical importance for turn-taking [9].

B. F1 Score Evaluation

While MAE provides an overall metric of the continuous
prediction accuracy of the model, we note that evaluating a
model only in the continuous domain fails to provide an idea
of how the model will perform for real-world robot decision
making on discrete turn or no turn decisions. To account
for this, we utilize F1 scores and precision-recall to evaluate
the robot’s discrete turn-taking decisions. The discretization
approach previously explained in Sub-Section F of Section III
requires tuning of the parameters including the accumulation
window size and the probability threshold value. First, to find
the optimal window size, we identified the best-performing
model from the ablation test and plot the F1 score versus
threshold value for different window sizes. Maximizing the F1

score gives us an idea of an optimal balance between False
Positives (FP) and False Negatives (FN). For the purpose of this
evaluation, a True Positive (TP) is counted as any prediction
within two seconds of the ground truth turn-taking event. This
two-second tolerance is according to studies on the distribution
of human turn-taking latency [8]. Also, note that we do not
consider probability thresholds below 0.2 due to the limitation
that for very low thresholds, the model predicts always speaking,
and given our rising-edge method of discretization, we would
only predict a single turn for the whole sequence. For traditional
classification tasks, lowering thresholds would increase FPs
and lower precision (and consequentially F1 score) but in this
case lowering thresholds too far decreases FPs. Given that the
metric does not provide meaningful information past this point,
we omit evaluating probability thresholds below 0.2. Once we
obtain the plot with the F1 score versus threshold value for
different window sizes we select the optimal accumulation
window from it. This optimal accumulation window is then
used to plot the F1 score performance of the different models.

V. RESULTS

The results of our ablation test and F1 score evaluations are
summarized in Table II and Figure 4.

A. Ablation Test

The results of our overall ablation test are described in Table
II. We observe that the model with verbal and prosodic features
performs best over all prediction lengths. Prosody scores comes
in second over all prediction lengths, in agreement with prior
work [14]. Notably, gesture and the model with all features
including gestures perform worst in this test. We attribute this
to strong overfitting on the gesture features (training loss was
0.148 and evaluation loss was 0.217).
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TABLE II: Mean absolute error ablation test results

Prediction Length Silence Verbal Prosody Gesture Verbal+Prosody Verbal+Prosody+Gesture

250ms 0.2696 0.2724 0.2630 0.3273 0.2583 0.3070
500ms 0.2739 0.2769 0.2682 0.3339 0.2639 0.3154

1s 0.2866 0.2897 0.2812 0.3505 0.2781 0.3341
2s 0.3188 0.3211 0.3119 0.3813 0.3110 0.3674
3s 0.3418 0.3429 0.3350 0.3956 0.3344 0.3853

B. F1 Score Evaluation

The plots for the F1 score versus threshold value for different
windows sizes for the verbal and prosody model are shown
in Figure 4(a). The optimal accumulation window was ten
previous frames. The plot using this accumulation window to
determine the performance of the different models based on
changing probability thresholds is presented in Figure 4(b).
These results suggest overall performance remains mostly stable
across a significant range of thresholds from 0.2 to 0.7. We
note that aside from the worst-performing models which used
gesture cues, the others appear marginally different. Given
this result, we turn to a more granular approach of plotting
precision and recall to determine the differences in FPs and
FNs. We plot precision and recall using the same value of
accumulation window size of ten in Figure 5. From this figure,
we can see that the verbal and prosodic model skews toward
optimizing precision while simpler models such as silence
sacrifice precision for recall.

VI. DISCUSSION

In this study, we present a LfD based system capable
of making decisions on the appropriate time to take a turn
during a one-on-one social interaction context such as in
an interview scenario. We argue that attempting to create a
model generalizable to numerous contexts can be difficult and
may not be necessary in some cases. Instead, gathering small
amounts of data using a LfD approach has proven valid for
learning turn-taking behavior as demonstrated in our interview
context. In addition, while prior work predominantly focuses
on predicting EoT events and responding immediately without
any gaps [14], [16], [18], our approach successfully achieves
imitation of a human-like turn-taking response. Such turn-taking
responses that follow human social norms are important because
it is unnatural in human-human interaction to immediately
respond without any gaps (i.e., pauses) in speaker turns in all
contexts [8]. Our model is also the first to demonstrate the
benefits of including transformer-based verbal features from
TurnGPT in combination with nonverbal features for turn-
taking. Including this data provides a sense of grammatical
sentence completion and helps indicate whether the interview
question was completely answered; these are features that
simpler POS verbal features could not capture [16].

In terms of adapting a model to a specific context, our
results show that we can use a limited dataset of demonstrated
interviewer turn-taking behavior to build a performant model
for that context. Both gathering and labeling of data can be
prohibitively difficult. Our approach limits the former and
eliminates the latter, which is a significant finding for adapting
robots to new social interaction contexts after they have
been deployed. However, overfitting is a significant challenge
with high-dimensional features like gesture. Our findings

(a) Verbal+Prosodic model F1 scores over probability thresholds for
different sizes of accumulation windows.

(b) F1 score over probability thresholds for different models.

Fig. 4: F1 score plots

demonstrated that the lower-dimensional features provided by
prosody and verbal features provided by TurnGPT were better
for generalization in this context.

One phenomenon that we also observed in our data was
that FPs were strongly correlated with the interviewees’ use
of filler sounds such as ’um’. This is illustrated in Figure 6.
Figure 6(a) shows model performance with a speaker who
did not use filler sounds and the model correctly identifies
all TPs and produces no FNs or FPs. On the other hand, the
speaker in 6(b) frequently utilized filler sounds. Our ASR and
VAD detection systems did not detect such occurrences but
instead labeled these instances as silence because recognition
of disfluencies (e.g., filler sounds) still remains a state-of-
the-art research challenge and tools are still unavailable to
reliably recognize them [31]. The model falsely predicts to
take the turn when presented with these misrecognitions of long
silences. Future models should aim to address such disfluencies
because they are common in human speech and play an



7

Fig. 5: Precision-recall curve for models trained on different turn-
taking cues.

(a) Model response on an interaction without filler sounds.

(b) Model response on an interaction that includes filler sounds.

Fig. 6: Comparison of the accumulated prediction probabilities of the
model with ground-truth for two different test inputs.

important role in signaling an incomplete turn in natural human
social interactions [32]. Hence, it is necessary to address these
challenges with disfluencies for future human-robot interactions
and we hypothesize that finding a way to represent these
instances in our feature set would greatly improve the model’s
future performance.

Another notable finding in the data is the seeming disparity
between the MAE evaluation and precision-recall evaluation.

The verbal and prosody model performs best on MAE but not
necessarily on precision-recall. This suggests that the model
is better at predicting near and long-term speaking activity
than when predicting exact speaking onset. In other words,
this model makes conservative judgments about when to speak
whereas the other models are more eager. We hypothesize
that this phenomenon is also correlated with the issue of
filler sounds because such instances may penalize the model
for being eager and prompt during training. Consequently,
the model utilizes late turn-taking to better optimize the loss
function. We again expect that the results would improve on
recall-precision if filler sounds were better represented.

Lastly, we believe that in future work it is important to further
study the ideal trade-off between early turns and late turns
from a human-robot interaction perspective. Objective metrics
such as F1 score weigh each equally but this does not account
for subjective human evaluations on socially appropriate turn-
taking policies or their specific expectations of robot turn-
taking. Prior work further indicates that the context affects this
trade-off [3], [4], [11]. For example, in a job interview one
would be more wary of interruption than in casual conversation
with a friend. Moreover, it may be possible to recover from
mistakes in turn taking. An example would be identifying an
interruption has occurred and yielding the turn much like a
human would. Interruptions during HRIs have been studied in
several other contexts but as far as we are aware, interruptions
during turn-taking has yet to be explored [33]–[35]. Such
scenarios are challenging to study as systems that change the
flow of conversation are closed-loop in nature and less friendly
to offline training and evaluation. Often the solution for closed-
loop learning in robotics involves simulation environments, but
this approach is infeasible for the turn-taking task given that
we still lack a full model of human turn-taking [8].

VII. CONCLUSION

In this paper, we present a LfD approach for a robot to learn
appropriate context-specific turn-taking behavior from human
demonstrations. In comparison to existing work in turn-taking
that learns a model that predicts the EoT for a speaker and has
an agent speak immediately after, our model specifically learns
when a robot should speak in a given context. This accounts
for differences in social norms as well as appropriate uses
of short gaps, long gaps, and interrupts in turn-taking within
different social contexts. Results from experiments on applying
our LfD approach to a job interview context demonstrates that
our system can learn a turn-taking model that replicates human-
like turn-taking behavior in the given context. Furthermore,
we evaluated the role of verbal, prosodic, and gestural turn-
taking features for enabling a learned model to accurately
make a decision on when a robot should take a speaking turn.
Ablation analysis on these features suggest that the combination
of verbal and prosodic features perform better in training a
context-specific model, with limited demonstration data, to
determine when a robot should take a speaking turn.
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