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Abstract— Robot-mediated therapy is an emerging field of
research seeking to improve therapy for children with Autism
Spectrum Disorder (ASD). Current approaches to autonomous
robot-mediated therapy often focus on having a robot teach
a single skill to children with ASD and lack a personalized
approach to each individual. More recently, Learning from
Demonstration (LfD) approaches are being explored to teach
socially assistive robots to deliver personalized interventions
after they have been deployed but these approaches require
large amounts of demonstrations and utilize learning models
that cannot be easily interpreted. In this work, we present a
LfD system capable of learning the delivery of autism therapies
in a data-efficient manner utilizing learning models that are
inherently interpretable. The LfD system learns a behavioral
model of the task with minimal supervision via hierarchical
clustering and then learns an interpretable policy to determine
when to execute the learned behaviors. The system is able
to learn from less than an hour of demonstrations and for
each of its predictions can identify demonstrated instances that
contributed to its decision. The system performs well under
unsupervised conditions and achieves even better performance
with a low-effort human correction process that is enabled by
the interpretable model.

I. INTRODUCTION

Autism Spectrum Disorder (ASD) is one of the most
prevalent developmental disabilities and studies estimate that
1 in 44 individuals are affected [1]. ASD is characterized by
impairments in social interaction and communication, which
negatively impact the quality of life for these individuals [2].
Applied Behavioral Analysis (ABA) is the leading therapeutic
approach for improving social skills for individuals with
ASD [3]. Studies have shown interventions are most effective
when administered at least 20 hours per week during early
childhood [4], [5]. However, due to the large number of
individuals with ASD and the time-intensive nature of ABA
there is an insufficient supply of trained professionals to
deliver interventions [6]. Recent research is exploring the use
of robots to assist in the delivery of ABA therapy to address
these supply and demand challenges [7]–[9]. In general, the
goal of these works is not to replace human therapists with
robots but rather use robots as a tool to reduce therapist
workload and enable improved therapeutic outcomes. Recent
work has even demonstrated that children with ASD can learn
some social skills more easily via robot therapy [9].

Although many therapists and researchers agree that robots
have the potential to improve outcomes for ASD therapy, they
caution against a one-size-fits all approach [10], [11]. This is
because ASD encompasses a wide spectrum of social abilities
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and, therefore, human judgment is necessary to develop an
optimal treatment protocol. Therapists have expressed a desire
to supervise the way a robot interacts with children with ASD
because current systems are not always capable of adapting
a robot’s responses to the range of behaviors children with
ASD may exhibit [12]. Human supervision provides a “safety
net” that ensures optimal care is delivered in all scenarios
and improves trust in such systems [10]. For robot-assisted
therapy, this presents a need for personalization rather than a
universal approach to meet each individual’s needs.

Current research has begun to improve the ability to
personalize robot-assisted therapy by developing Learning
from Demonstration (LfD) approaches [7], [8]. LfD involves
teaching new skills to a robot by having the robot imitate a
human demonstration of a particular skill. This can improve
personalization by allowing rapid re-teaching of a therapeutic
robot for different children. Wizard of Oz (WoZ) is a
popular technique utilized for teaching a robot through human
demonstration and involves a human teleoperating the robot
during a human-robot interaction while humans are led to
believe the robot to be autonomous. WoZ allows for collecting
demonstrations in a human-robot interaction scenario rather
than a human-human scenario to minimize covariate shift.

For LfD approaches to deliver optimal patient outcomes
in ABA, the state of the art must still be advanced in three
key areas: generalization, transparency, and data-efficiency.
First, current LfD approaches are unable to learn multiple
tasks and often focus on learning a single task (e.g., teaching
a greeting or emotion recognition) [7], [8]. However, ABA
therapy encompasses a wide range of intervention behaviors
due to both the range of skills being taught and the fact
that intervention styles can vary from therapist to therapist
and child to child. Second, existing LfD approaches utilize
learning approaches where the learned model cannot be
interpreted, so non-technical experts are unable to interpret
how the system works and where it can fail [7], [8]. If robots
are to learn a task and be applied to healthcare applications,
it is essential that failure cases can be foreseen and mitigated
because failures have the potential to negatively impact patient
treatment [13]. Lastly, many existing LfD approaches utilize
machine learning techniques that require a significant amount
of data, but in clinical settings for children it is challenging
to gather these datasets due to privacy concerns [14]. Hence,
data-efficiency is crucial to make LfD practical to deploy in
ABA clinic environments because large amounts of labeled
data can incur significant time and monetary costs that will
inhibit adoption by ABA practitioners.

In this work, we present a transparent and generalizable
LfD-based approach to enable a robot to learn to deliver a



variety of ABA therapies by observing low-level features
during a human demonstration of a therapy. Herein, we
define low-level demonstration features as complex, time-
domain sensor data which includes a demonstrator’s voice
and joint positions. This is contrasted with discrete actions
that comprise a predetermined trajectory of low-level features
for each discrete action to define a specific utterance and/or
gesture (e.g., wave and say “Hi”). Our approach allows a
therapist to use a semi-supervised teaching interface to natu-
rally demonstrate an ABA interaction via teleoperation of a
robot through upper-body and voice imitation. Clustering then
segments and identifies similar discrete therapist actions from
low-level demonstration features (voice and joint positions).
Our approach then learns a policy of when to deliver each
of the learned actions based on a given interaction state,
using machine learning algorithms which require few therapist
demonstrations. The robot can rationalize what factors led
to each decision and point to similar instances in its training
data. The resulting system enables teaching a robot to perform
novel interactions in an ABA session in a generalized and
interpretable manner.

II. RELATED WORKS

Recent research has proposed frameworks for learning from
demonstration general social tasks [15] and specific social
tasks such as robot-mediated therapy [7], [8], [16]. Senft et
al. [16], [17] proposed an online learning framework called
Supervised Progressively Autonomous Robot Competencies
(SPARC) to learn via WoZ demonstrations to deliver robot-
child interactions to children with and without ASD. The
wizard selected discrete actions from a predetermined set
during the interactions and Multilayer Perceptron (MLP) as
well as K-Nearest Neighbor (KNN) learning algorithms were
investigated for learning a policy to imitate the wizard’s
choices based on children’s actions. The learning framework
was not a fully autonomous system but rather proposed actions
to a human operator with the goal of reducing workload.
Winkle et al. [18] further extended the KNN-based SPARC
framework to focus on long-term personalization and enable
a robot to interact autonomously after several demonstrations
of a fitness coaching scenario. All of these approaches used
learning algorithms that could often be trained by a single
individual providing relatively few demonstrations. KNN-
based models have the additional advantage of transparent
results by retrieving the training dataset samples that were
used for a given prediction. However, a limitation of these
approaches is that they use special interfaces to limit robot
actions to a set of discrete choices. This requires manually
creating a new action space for each task and impedes the
LfD approaches from being generalized to other tasks.

Several works have turned towards data-driven methods
to work with lower-level features (e.g. raw sensor data)
to develop more general approaches for learning social
interactions from demonstration. Such features enable the use
of natural and continuous action spaces such as voice and joint
positions rather than using a predefined set of discrete actions.
Clark-Turner et al. [7] proposed a Deep Q-network (DQN)

based approach to learn how to deliver an ABA intervention
for teaching greetings. An expert teleoperator selected from
three therapy actions (prompt, reward, and end session) based
on responses from adult participants who simulated children’s
behavior during a therapy session. A DQN was then trained
to select from the three discrete therapist actions in response
to video, audio and gaze cues from the participants. Hijaz
et al. [8] also used Deep Neural Networks (DNNs) to learn
from therapist demonstrations an emotion recognition ABA
therapy based on real-world clinical interactions with children.
The approach not only used DNNs to select the appropriate
discrete therapist action to take based a child’s behavior but
also used clustering methods to automatically segment, cluster,
and identify therapists’ discrete verbal actions from their
demonstrations. The ability of these data-driven approaches to
learn in more unstructured settings is a significant advantage
for generalizing to real-world ABA practices.

Although data-driven methods demonstrate some advan-
tages, they often require large datasets for high accuracy and
lack transparency. The DQN approach by Clark-Turner et al.
struggled to achieve high accuracy on the test dataset (67.8%)
and failed to make the important distinction of when to deliver
a reward (32.1% accuracy). The model correctly identified
unresponsive participant behaviors with 95% accuracy but had
much lower accuracy when the participants were responsive
(37.5% accuracy). The authors note that this result was
likely due to overfitting and that more data would be
necessary to improve the model. Similarly, Hijaz et al. also
noted significant overfitting and data imbalance as possible
contributors to the DNN’s suboptimal accuracy (43.5%).
However, collecting large amounts of labeled data can
incur significant costs that could inhibit adoption of robotic
systems by ABA practitioners. Additionally, interpretability
and transparency are essential for clinical applications but
DNNs are often infeasible to interpret and considered “black-
box” machine learning [19]. Although significant research
has been done on post-hoc techniques to interpret black-box
models, such interpretations are often criticized for convincing
yet inaccurate explanations [20], [21]. This has led a growing
number of researchers to caution against the use of black-box
DNNs in high-stakes scenarios such as healthcare [22].

Alternative approaches exist that can be more interpretable
and data-efficient than DNNs while retaining the ability to
work with low-level features. Liu et al. [15] proposed a data-
driven model for teaching a robot to serve as a shopkeeper.
This system incorporated vectorized speech, gestural, and
spatial cues and performed fully unsupervised learning by
clustering different shopkeeper actions and finding their
relationship to customer actions. Using several hours of
recorded customer and shopkeeper verbal and nonverbal
interactions, a Naı̈ve Bayes model was able to imitate socially
appropriate shopkeeper behavior. The authors noted that using
well-designed abstractions of input data via clustering and
dimensionality-reduction techniques created a more noise-
tolerant and accurate system than using raw sensor features.
The Naı̈ve Bayes model used is also more data-efficient
because it assumes independence of features and, therefore,



has fewer trainable parameters. This feature-independence
also makes the model an inherently interpretable model
because a human can easily see what input factors led to
the final prediction [20]. Such data-efficient and interpretable
learning algorithms provide promising avenues for advancing
LfD approaches for robot-mediated ABA therapy.

From the existing body of work, it is clear there is a
need for effective, data-efficient, and interpretable models
for LfD robot-mediated therapy as well as social robotics in
general. An ideal method should be able to learn from general
low-level features as in [7], [8], [15], while maintaining
the data-efficient aspects of simpler approaches as in [16]–
[18]. Additionally, an ideal approach should be transparent
to enhance therapist trust and patient outcomes. In this
research, we aim to address the two challenges of data
efficiency and interpretability while learning a social task from
human demonstration. Herein, we present a LfD approach to
learn structured social interactions such as ABA in a semi-
supervised and data-efficient manner.

III. DATA COLLECTION VIA LFD

A remote operator (i.e., WoZ) teleoperated a NAO robot
via upper-body and voice imitation during the delivery of a
robot-mediated ABA therapy to gather data for training and
evaluating our LfD approach, Figure 1. The procedures for
collecting this dataset were reviewed and approved by the
Institutional Review Board at Oakland University.

(a) Interaction scenario (b) Wizard controlling the robot

Fig. 1: LfD data collection

A. Interaction Scenario
The ABA therapy used in this study followed a Discrete

Trial Training (DTT) protocol which is a highly structured
ABA approach for teaching social skills via prompting, re-
warding, and errorless teaching [23]. Namely, a discriminative
stimulus (SD) is used to elicit a response from a child such
as asking a question or requesting them to perform an action,
Figure 1(a). The following SD’s were used in this study:

• Emotion recognition from nonverbal behavior (Robot
asks “how am I feeling” and acts sad, happy, or angry)

• Manding (Robot asks child for his/her preferred reward,
among options of a game, video or song)

• Imitation (Robot asks child to imitate its gestural actions
such as touching its head, raising its arms, or waving)

• Verbal instructions (Robot asks child to perform an
action such as “wave your hand” or “touch your head”
without modeling the action)

• Wh-question answering (Robot asks a question like
“Who flies a plane?” or “What tells time?”)

After delivering an SD, the robot would wait for a child’s
response. The robot delivers a prompt if a child did not
respond at all, an error correction if the child responded
incorrectly, and a reward for correct responses. A prompt
consists of demonstrating the correct response to teach the
child the appropriate way to perform the skill. An error
correction is similar to a prompt but the therapist re-delivers
the SD, and then immediately delivers a prompt. If the child
again responds incorrectly, the error correction is repeated
up to 3 times before moving onto the next SD. The therapist
delivers either verbal praise or a physical reward if the child
responds correctly. Herein, we refer to each SD, prompt/error
correction, and reward sequence as a trial. An overall session
with a child followed a standard DTT protocol and consisted
of presenting nine randomly selected SD’s (i.e., nine trials)
from the list presented above.

B. Participants
We do not collect data from real children with ASD but

rather adult participants imitating them, because autonomous
systems such as ours and [7], [8] are experimental in nature.
Hence, they must be extensively validated before trials with
children to mitigate risks to a child’s treatment program if
failures occur. We collected data from 4 English-speaking
adult participants that participated in 4 sessions (36 trials
per participant). The participant was instructed to respond
correctly for half of the trials and incorrectly for the other half.
Written informed consent was obtained from all participants
prior to the data collection and participants could withdraw
from the data collection at any time.

C. Teleoperation and Data Collection System
The teleoperation system allows an operator to remotely

teleoperate the NAO via upper-body and voice imitation while
data is collected during the demonstration of the ABA therapy,
Figure 1(b). The operator’s speech is captured and played
back via the robot’s speakers. Similar to [24], the voice that
is played back is pitch-shifted to mask the human identity
and make the speech sound more child-like as well as robotic.
The robot captures the participant’s audio and plays it back
for the operator during the interaction. An Orbbec Astra Pro
is also used to capture the upper body skeletal position of
both the operator and participant. This allows the NAO to
replicate the operator’s posture and the operator to observe
the participant from the robot’s perspective. This system
allows for bidirectional verbal and gestural communication,
while maintaining the impression of an autonomous robot.
In addition, the wizard is provided with a GUI interface that
allows the wizard to select between 4 different prompting
levels, 3 different child rewards (in response to manding) and
a toggle to indicate the start of a new trial.

IV. LEARNING SYSTEM

Our learning system aims to imitate the wizard’s verbal,
gestural, and discrete reward selection actions during DTT
trials by learning from the wizard’s demonstration data. This
learning process is accomplished in two steps: 1) learning a



model of discrete wizard actions and 2) learning a policy to
execute the appropriate action based on the interaction state.

A. Data
The data from a session can be subdivided into data tuples

that each consist of a single trial (τk). Each trial is composed
of the robot’s joint positions (jk,R), child joint positions
(jk,C), robot verbals (vk,R), child verbals (vk,C), and time-
stamped reward presses (rk):

τk = (jk,R, jk,C , vk,R, vk,C , rk) (1)

jk,R and jk,C are times-series 12-dimensional vectors that
represent the Cartesian position of 4 key joints (both hands
and elbows). vk,R and vk,C are a series of time-stamped
phrases obtained by processing the raw audio data through
Google Speech-to-Text.

Each trial is an instance of a particular target skill (ti)
(e.g., recognizing the emotion sad or answering “who flies a
plane?”) among a set of target skills (T ) being taught to the
child such that ti ∈ T . Each target skill ti = {Bi, πi} can be
modeled as a set of robot behaviors (Bi) that can be used to
teach the skill to a child and a policy (πi) that defines when
during an interaction to utilize these behaviors.

For a set of behaviors Bi = {bi,1, bi,2, ...bi,j} each
individual behavior bi,j = {a1, a2, ..., an} represents a high-
level grouping of different verbal and/or gestural robot actions
(an) with the same communicative goal. Each individual
action in bi,j may have minor differences in delivery but serve
the same purpose in an interaction (e.g. “good job” and “great
job” are different actions in the “verbal praise” behavior).
We also define each target skill’s policy π(si,j) = bi,j as a
mapping of individual interaction states (si,j) to behaviors.

Formally, state at time t is defined as:
st = (jt,C , vt,C , {b1, b2, ..., bt−1}) (2)

where jt,C and vt,C are the child’s joint positions and verbals
from the beginning of bt−1 to the current time (beginning
of bt). Our approach seeks to model T , Bi ∀ti ∈ T , and π
using only {τ1, τ2, ...τk}.

B. Segmentation
First, trial τk must be segmented into its constituent robot

actions Ak where ∀a ∈ Ak,∃b|a ∈ b ∧ b ∈ Bi for some
unknown target skill ti. The raw joint positions jk,R are
sampled at 20Hz and first smoothed via a Savitzky-Golay
filter. A scalar gestural activity signal gk is created by taking
the L2 norm of the time-derivative of the smoothed robot
joints. We threshold gk to obtain a binary signal indicating
whether the robot is in significant motion. Small gaps in this
signal are removed with binary dilation and erosion. A binary
signal is also constructed to represent robot voice activity by
using the phrase timestamps of vk,R obtained by Speech-to-
Text. These continuous and discrete signals are visualized in
Figure 2 for a sample trial. Applying the constraint that only
one continuous verbal phrase can be present in an action,
robot actions Ak can be segmented from τk by logical OR’ing
the verbal and gestural signals, locating the positive regions,
and sampling jk,R and vk,R at these regions.

C. Clustering
After segmenting the set of actions Ak for trial τk, we

model T and Bi ∀ti ∈ T using a two stage clustering process.
The two stage clustering approach consists of: 1) clustering
similar actions into sets of behaviors Bk and 2) clustering
and merging similar behavior sets to form T .

1) Action Distance Function: We define a distance function
Da between two actions a1 and a2. The action phrases v1,R
and v2,R are first converted to unit vectors ψ1,R and ψ2,R

using a Sentence-Transformer model [25]. We then formally
define the distance function as:

Da(a1, a2) = α ∗ dtw(j1,R, j2,R)

min(|j1,R|, |j2,R|)
+

β ∗ ||ψ1,R − ψ2,R||
(3)

where:
α = c ∗ G

G+ V
, β = d ∗ V

G+ V
(4)

dtw() = Dynamic Time Warping distance of timeseries
G = avg(g1) + avg(g2)

g1, g2 = segment of gk for time intervals of a1 & a2

V =

{
1, if a1 or a2 has a verbal
0 otherwise

c = scaling constant for gesture
d = scaling constant for verbals

This distance metric effectively captures both gestural and
verbal distance. The dynamic weights α and β serve as a
simple “attention” mechanism to focus the distance on gesture
or verbals. For example, if the robot is at rest during a question
answering trial, the learning system should disregard gesture
as it is unimportant and could add noise. Constants c and d
tune the sensitivity to gesture and verbals and were determined
using a small subset of training data.

2) Clustering Similar Actions: We can cluster the actions
into behaviors by using the established distance metric and
hierarchical agglomerative clustering. Hierarchical clustering
was selected based on its ability to cluster with only distance
information. This contrasts alternative methods such as K-
Means that compute centroids. This is because we cannot
model a centroid of two gestures but can still compute the
distance between them. We perform this clustering step to
cluster each trial’s actions into behaviors. For k trials we
obtain k behavior sets {B1, B2, ..., Bk} that must then be
further clustered into target skills.

3) Clustering Similar Behaviors: To cluster the behavior
sets into targeted skills, we first define the distance Db(b1, b2)
between two behaviors b1 and b2 as the average distance
of all pairwise comparisons between the actions from each
behavior. We define the distance DB(B1, B2) between two
sets of behaviors B1 and B2 as the minimum-cost assignment
of behavior pairs. This solves the problem of how to optimally
match the behaviors in two sets so as to minimize the total
distance Db between matched behavior pairs. The min-cost
assignment for two dissimilar behavior sets should be high,
while for two similar sets there should exist a low-cost pairing



Fig. 2: Action Segmentation

of behaviors. To accomplish this, we compute a matrix of
the distance Db between all possible behavior pairs from
B1 and B2. We obtain the optimal assignment of rows and
columns that minimizes the total cost using the Hungarian
algorithm. Dividing that cost by the size of the smaller set
min(|B1|, |B2|) results in the normalized distance between
B1 and B2. Applying hierarchical agglomerative clustering
to behavior sets {B1, B2, ..., Bk} with distance metric Db,
we cluster similar behavior sets to form unique target skills
ti. We prune very small clusters as these are likely outliers.
The set of unique target skills ti then provides the high-level
model of the target skills T .

For a given target skill ti consisting of k trials, we
could construct Bi by simply merging the behavior sets
{B1, B2, ..., Bk} belonging to it. However, Bi is prone to
have duplicate behaviors if constructed this way. This is
because the behavior clusters were initially created at the
trial level, where very little information is available and
noise is high (i.e. only one or two instances of a given
behavior). Mismatches in the Hungarian assignment can also
accumulate errors and amplify cluster noise. Hence, we merge
all the actions from the behavior sets belonging to target skill
ti to obtain a set of all actions Ai for ti. We re-compute
the hierarchical clustering with Ai to obtain the new set of
behaviors Bi. This creates clusters with fewer duplicates of
behaviors because it uses a globally optimal solution instead
of a union of locally optimal trial-level solutions.

D. Cluster Repair
Clinical settings require minimal failures in intervention

delivery given their potential to negatively impact outcomes.
However, mistakes in clustering actions or behaviors can
occur when the process is completely automated. Given the
necessity to minimize robot failures in clinical settings, we
can use human labeling to amend the learned model and
reduce the possibility of intervention delivery failures. This is
possible because our model learns an interpretable and easily
understandable model of the interaction structure (clusters).
This contrasts end-to-end black-box systems which learns a
complex latent space. In our learning system, a human can
view the learned actions, behaviors, and skills, and correct any
errors in the learned model. Herein, we refer to these model
corrections as cluster repair. For each action, the human
has the ability to reassign it to another behavior cluster
within either the same target skill or in a different target

skill. Additionally, the human can hide certain actions due to
corrupted verbals or gestures (e.g., speech-to-text or wizard
skeleton tracking occlusion errors). We hide actions instead
of removing them because they are still useful for training
the policy but should not be presented to the child when the
robot samples an action from that behavior. We also provide
the human with the option to delete spurious actions which
should not have been recognized in the first place and which
add significant noise to the policy training data. Enabling
such cluster repair improves robot performance with minimal
additional human effort.

E. Policy
We use a KNN model to create a policy that is both data-

efficient and interpretable. For each target skill ti, we extract
the behaviors executed and the state immediately preceding
them to form (state, behavior) pairs. From there, we construct
a table of such pairs. In addition to the learned behaviors, we
append an “End” behavior to each trial, allowing the policy
to predict when to start the next skill.

To decide which action a robot should take, the policy
first looks up its behavior history {b1, b2, ..., bt−1} in the
current trial against all table entries. If one or more behavior-
history matches is found in the state-behavior table, the
model uses a KNN approach to compare current child states
(jt,C , vt,C) against those of the table entries. We use the
same distance metric used for robot action in equation (3)
and select K=1 neighbor. The closest neighbor’s behavior is
executed if the distance is below an empirically determined
threshold. Otherwise, the robot is observing a novel child
behavior and lacks a conclusive answer as to how to behave.
Here, the policy can soften the history constraint and select
a match based on {bt−1} only rather than {b1, b2, ..., bt−1}.
This behavior can be proposed to the therapist and, if accepted,
added to the table.

Similarly, if no matches with the same behavior history are
found the robot can again select a behavior based on {bt−1}.
If there are any matches, the robot can select a behavior based
on the closest child-state and propose it as a suggestion. For
example, if the robot has not previously experienced a state
where the SD is delivered 3 times, this state would be missing
from the table. However, other entries may indicate verbal
praise is often delivered after an SD and the robot can suggest
verbal praise. The robot adds this new instance to the table
if the proposed behavior is accepted.



V. EXPERIMENT

We conducted live DTT interactions to compare the
performance of a policy that is learned with the raw clusters
and a policy learned with the repaired clusters to investigate
how the transparent learning approach could enable human
refinement to increase performance. This allows us to measure
the accuracy of the clustering, the accuracy of the policy, and
the end-to-end unsupervised accuracy of the system.

A. Procedure
We evaluate our learning system during a live DTT

interaction. The robot was controlled semi-autonomously by
having the learning system utilize the learned policy to output
a behavior during each state of the interaction to the wizard
and allowing the wizard to confirm whether the proposed
behavior is correct. When proposing a behavior, the interface
notes whether the policy is certain of its decision based on
a strongly similar example or uncertain of its decision. The
wizard is also presented with alternative learned discrete
behaviors from within that skill so that if the proposed
behavior is incorrect than the wizard can select the appropriate
behavior in the given interaction state. This semi-autonomous
approach was used to evaluate our learning system as it
provides a ground-truth behavior for each interaction state of
the live DTT interaction while simultaneously ensuring that
the interaction with the participant progresses correctly.

Overall, we evaluated our system with one adult participant
interacting with the robot over 144 trials (16 sessions). The
participant was instructed to deliver a mix of compliant
and noncompliant responses at their discretion. Each trial
consisted of teaching a target skill randomly selected from
the set of learned skills (i.e., SD’s found in section III-A).
The 16 sessions with the participant were divided evenly so
that unrepaired policy was used for half the sessions (72
trials) and the repaired policy was used for the other half (72
trials). Due to data corruption 9 trials were lost from one of
the policy tests. Consequently, both policy conditions were
trimmed to 63 trials.

B. Measures and Metrics
Cluster accuracy was measured by comparing the original

behavior and target skill clusters against the repaired clusters.
We compute skill clustering accuracy as the percentage of
actions whose repaired skill matched their original assigned
skill. Similarly, we compute behavior clustering accuracy as
the percentage of actions whose repaired behavior matched
their original behavior. As described in section IV-D, we
additionally include the number of hidden and deleted actions.

Repaired cluster policy accuracy was measured by
training the policy on repaired clusters and comparing the
suggested behaviors output from the policy against behaviors
selected by the wizard. The use of repaired clusters isolates
the policy from any errors in clustering and allows us to
measure the performance of policy learning directly. We
define policy accuracy as the percentage of accepted policy
suggestions over all actions performed in the live experiment.
We separately score accuracy for certain and uncertain policy

decisions in addition to an overall accuracy. We also separately
score the subset of skills targeting a gestural response from
the participant and those skills targeting a verbal response.

Unrepaired cluster policy accuracy was evaluated fol-
lowing the same procedure, but using raw clusters instead of
repaired clusters to learn the policy. This metric effectively
evaluates the end-to-end performance of segmentation, cluster-
ing, and the policy under unsupervised conditions. Similarly
to the repaired condition, we score accuracy for all decisions,
for certain decisions, and for uncertain decisions, as well as
separating the target skill types.

C. Results
For the 421 actions segmented from our dataset, the

clustering method achieves near-perfect accuracy on skill
clustering (99.5%). Upon further inspection, the 0.5% of
incorrectly-assigned actions were due to a failure of the
human to signal the start of a new trial. Behavior clustering
also achieves a high accuracy of 75.8%. The 24% that were
clustered incorrectly were mostly due to false separations
of verbal praise into separate behaviors. DTT can have high
variance in the phrasing of verbal praise to avoid monotony,
which led to high distances from the sentence embeddings.
Additionally, ~10% of the actions were selected to be hidden,
almost entirely due to speech-to-text errors. With these actions
hidden the repaired-cluster policy was able to deliver better
responses free of grammatical mistakes, an important factor
for deployment in clinical settings. Sixteen actions were also
selected for deletion; these corresponded to failures in the
action-segmentation system caused by false-positive gestures
or divisions of one action into fragments.

The performance of both policies are presented in Table I.
The repaired cluster policy achieves a high overall accuracy of
90.3% in selecting the correct behavior in a given interaction
state. However, there is a significant disparity in accuracies
for the policy between verbal and gestural skills. The policy
achieves perfect accuracy (100%) on verbal responses but
moderate accuracy (66.1%) in the gestural skills categories.
We observed a strong bias against delivering verbal praise
on the gestural skills. The policy also seems strongly biased
to mark its decisions as certain for gestural target skills
(56 out of 59). However, the perfect verbal scores indicate
that the transformer-based verbal features provide excellent
performance when the clustering errors are repaired.

The policy trained on unrepaired clusters performs similarly
overall to the policy trained on the repaired clusters but
with several key differences. As expected, the cluster noise
reduced the total accuracy by 9.4%. Verbal skill accuracy
was decreased by 13% but it is important to note that
the certain verbal accuracy decreased by only 3%. This
indicates the policy certainty correlates strongly with actual
accuracy. Overall the unrepaired policy’s ability to accurately
select behaviors during gestural skill teaching trials was
similar to the repaired policy condition. However, one key
difference is the higher accuracy of the unrepaired policy on
uncertain behavior predictions during gestural trials. While
it is difficult to draw conclusion about this accuracy given



the limited number of instances, the disproportionate ratio
of certain to uncertain gestural instances suggests the policy
was overconfident in gestural target skills.

TABLE I: POLICY PERFORMANCE

Repaired Unrepaired

Target
Skills

Prediction
Type

Policy
Accuracy

# of
Instances

Policy
Accuracy

# of
Instances

All All 90.3% 207 80.7% 212
Certain 87.1% 147 81.3% 139
Uncertain 98.3% 60 79.5% 73

Gestural All 66.1% 59 70.4% 81
Certain 66.1% 56 66.7% 72
Uncertain 66.7% 3 100.0% 9

Verbal All 100.0% 148 87.0% 131
Certain 100.0% 91 97.0% 67
Uncertain 100.0% 57 76.6% 64

VI. DISCUSSION

In this work, we present a novel approach to robot-mediated
therapy that can learn multiple tasks from limited human
demonstrations and make interpretable decisions using its
learned model. The system achieves high accuracy in end-
to-end unsupervised learning and even higher accuracy with
cluster repair as a form of semi-supervision that is enabled
by the transparency of the models.

In future work, we hope to further improve system accuracy
to the point where clinical evaluations with real children
can be conducted. While the verbal analysis capabilities of
our system perform extremely well, gestural analysis has
room for improvement. The interpretable KNN policy was
useful for identifying instances where the skeletal tracking
of the participant failed due to occluded limbs or insufficient
contrast. Improving the input capture of joint positions
might significantly improve performance on gestural skills.
Replacing the Dynamic Time Warping with other approaches
could also improve gestural comparison. A learning-based
gestural comparison system such as DNNs could provide
better participant invariance, positional invariance, and noise
tolerance which simple time-alignment techniques cannot
provide. Another important piece necessary for clinical
deployment is the addition of turn-taking behavior. Similar to
previous work we utilized fixed-time thresholds for responses
[7], [16], [17]. However, children should be praised or
corrected immediately after they respond because additional
delay could confuse the child or reduce engagement [10].

Finally, we note that further HRI studies would be ben-
eficial to evaluate interpretability and explainability from
therapists’ perspectives. While the models used in this paper
are easily examined by roboticists, it is a further challenge to
intuitively convey the meaning of this data to ABA therapists
not well-versed in robotics and machine learning.
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