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Abstract— Current studies have demonstrated that Socially
Assistive Robots (SARs) delivering Applied Behavior Anal-
ysis (ABA) based interventions can teach individuals with
Autism Spectrum Disorder (ASD) valuable social, emotional,
communication and academic skills. These robot-mediated
interventions (RMIs) are typically delivered via teleoperation,
which places additional or similar workloads on therapists as
administering interventions directly. The autonomous delivery
of ABA therapies to individuals with ASD by a robot could
significantly reduce workload and improve the usability as well
as acceptance of this technology. However, pre-programming
the autonomy of a SAR with a limited set of interventions is
not sufficient for clinical practice due to the rapidly changing
and different learning needs of individuals with ASD. In order
to be applicable in clinical settings, therapists must be capable
of customizing and personalizing interventions to the needs of
each individual. Towards this goal, in this paper we present
the initial development and deployment of a proof-of-concept
Learning from Demonstration (LfD) system in-the-wild to learn
the verbal behavior of therapists during the delivery of an
ABA-based intervention to children with ASD. We also present
preliminary data on the results of a policy trained on data
collected from demonstrations provided during this in-the-wild
deployment of our LfD system.

I. INTRODUCTION

The Center for Disease Control estimates that 1 in every
54 individuals are diagnosed with Autism Spectral Disorder
(ASD) [1]. ASD is a condition that affects an individual’s
behavior, including their social, emotional and communica-
tion skills [1]. Early childhood intervention for an individual
with ASD has been shown to positively impact his/her
outcomes [2]. Applied Behavioral Analysis (ABA) therapy
is an evidenced-based practice for delivering therapeutic
interventions to teach individuals with ASD new valuable
cognitive, emotional and behavioral skills [3]. More recently,
there has been interest in utilizing Socially Assistive Robots
(SARs) to deliver ABA-based therapies to individuals with
ASD because Robot Mediated Interventions (RMIs) which
utilize the principles of ABA have been effective in helping
children with ASD learn new beneficial skills [4]-[7].

The majority of existing research in RMIs have an ABA
therapist teleoperating a SAR to deliver an ABA session
whether by pre-scripted social behaviors [7]-[10] or a com-
bination of motion tracking and real-time streaming of the
teleoperator’s voice [11]. Teleoperation of a robot by a thera-
pist during an intervention requires significant cognitive load
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while also affecting the treatment integrity of the intervention
[11]. Meanwhile, therapists would still be responsible for
delivering the interventions which reduces the robot’s overall
utility as it would require the same or additional workload as
when therapists directly deliver an intervention [12]. Hence,
the autonomous delivery of ABA therapies by SARs can po-
tentially be a more effective, efficient, usable, and acceptable
approach because therapists would only need to monitor the
SAR behaviors and intervene only when necessary [13].

In order for SARs to autonomously deliver an intervention
they must be capable of adapting to the non-deterministic
human-robot interactions within an ABA intervention and
rapidly changing as well as different learning needs of
children with ASD. These non-deterministic human-robot
interactions includes the different responses of a child during
an intervention, ambient and background noise, unexpected
behaviors from the child and differences in responses be-
tween different children. Hence, a SAR must be capable
of learning a policy which maps the current state of an
intervention to the appropriate robot behavior to generalize
to different human-robot interaction scenarios within an
ABA intervention session. Furthermore, children with ASD
have rapidly changing and different learning needs due to
different behaviors, preferences, and traits of learners with
ASD [14]. Hence, therapists desire the ability to personalize
interventions delivered by SARs and do not believe they can
be pre-programmed with a set of interventions to meet all
the learning needs of individuals with ASD [14]. Learning
from demonstration is an approach for non-experts to teach
a robot a policy to autonomously complete a task [15]. LfD
refers to the process of transferring a new skill to a robot by
having a human user demonstrate the skill to a robot [16].

In this paper, we present a proof-of-concept LfD system
capable of learning the verbal behavior of an ABA ther-
apist to enable a SAR to autonomously deliver an ABA
intervention. First, the learning data was captured during a
teleoperated RMI where therapists remotely controlled the
robot. The robot was teleoperated using motion tracking
and voice streaming via a Virtual Reality (VR) interface
where the verbal responses of the therapists and the chil-
dren were recorded concurrently via microphones [11]. The
verbal utterances of the therapists during the intervention
are clustered using unsupervised learning. The clusters are
then used as labels for the children’s utterances. Namely, the
system takes as input the raw audio spectrogram signal from
the child’s verbal behavior and outputs the corresponding
ABA therapist verbal response accordingly. We designed an
entirely unsupervised learning method that allows the SAR



to automatically learn the verbal structure of an ABA inter-
vention session from demonstrations provided by a therapist
in-the-wild.

II. RELATED WORK

There is currently a handful of research focusing on having
robots learn from human demonstrations social human-robot
interaction (HRI) tasks [17]-[19]

In [17], a deep reinforcement learning-based system was
developed for robots to learn to deliver interventions to
individuals with ASD from demonstrations provided via
teleoperation control of a SAR. Namely, the researchers
teleoperated a robot using three pre-scripted robot behaviors
during the delivery of mock greeting interventions to healthy
adult participants. A DeepQ network was then trained using
the observed RGB video stream from the robot’s camera
and audio spectrogram from the robot’s microphone as the
inputs to the model and the teleoperated robot behaviors
as the expected behaviors the robot should take during the
intervention. The learned DeepQ network enabled the robot
to autonomously respond with the appropriate scripted robot
behavior in response to a participant’s actions during an
intervention.

In [18], a LfD system was developed to learn to deliver
group recreational activities from demonstrations provided
by healthcare professionals teleoperating a SAR. Namely,
healthcare professionals pre-scripted robot behaviors (i.e.
speech and arm motions) and demonstrated the structure
of an activity by teleoperating the robot behaviors. The
demonstrations were then utilized to learn a random forest
classifier which mapped the appropriate robot behavior to
the state of an activity. The pre-scripted robot behaviors and
learned random forest classifier was then utilized by the robot
to autonomously deliver a group recreational activity to older
adults.

In [19], a LfD system was developed to learn appro-
priate shopkeeper social behavior by observing human-
human interactions between a customer and a shopkeeper.
Namely, speech as well as physical locations of participants
within the space were recorded during mock shopkeeper
and customer interactions within a lab setting. Speech was
collected by the participants using a handheld audio recorder
which they manually indicated the beginning and ending of
their speech so the speech-to-text API could translate the
utterance to text. A dynamic hierarchal clustering approach
was used to group speech utterances of the shopkeeper
into a set of discrete speech behaviors. These clusters were
then used to label the customers utterances to train a naive
Bayesian classifier to output robot speech according to input
customer utterances. Although the system could learn the
appropriate shopkeeper verbal behaviors from human-human
interactions, the approach required participants to manually
identify when they were speaking during the demonstrations
and contained significant speech recognition errors due to
limitations in the speech-to-text API.

Current research has demonstrated that LfD approaches
can be utilized for learning policies for social tasks from

human demonstrations. However, existing approaches still
either require a demonstrator to pre-script or utilize pre-
scripted robot behaviors to demonstrate a social task to
a robot [17] [18]. Demonstrating a task with pre-scripted
behaviors can be unnatural because users have a limited
set of behaviors they can utilize during a social interaction
and can also eventually result in repetitive interactions. Such
repetitive behavior can be limited when teaching individuals
with ASD social interaction skills, since the goal of ABA
therapy is to teach these individuals to generalize to human-
human interactions rather than teaching them how to interact
with a robot [20] [21]. Existing LfD approaches are also
evaluated by collecting demonstration data within laboratory
settings [17] [19]. Such laboratory settings may not reflect
real-world interaction data because adult participants are
providing mock demonstrations of social interactions and
the demonstrations are in a controlled environment. If such
approaches are to be utilized for the delivery of therapies to
children with ASD, it is necessary that intervention demon-
strations be collected within these settings by the actual users
that will be interacting with these systems (i.e., therapists
and children with ASD). Namely, existing approaches must
account for variable responses from children and, conse-
quently, the therapists’ responses while demonstrating an
intervention. It is also necessary to address the noisy and
unstructured environments where these interventions take
place because current speech recognition techniques are
not suitable for children or the noisy environments where
interventions are held (e.g., classrooms) [22].

In this paper, we introduce a proof-of-concept LfD system
that learns the verbal behavior of a therapist from their
demonstrations of an ABA-based intervention within a real
clinical setting. Namely, our approach is applied to data
collected on therapists delivering an emotion recognition
intervention within a classroom of an ABA clinic to children
with ASD by teleoperating the speech and motion of a SAR
[11].

III. LEARNING FROM DEMONSTRATION USER STUDY

We conducted a user study to collect therapist demonstra-
tions on the delivery of an ABA-based emotion recognition
intervention to children with ASD. The primary objective
was to collect demonstrations of intervention delivery in a
real-world clinical setting. Namely, all demonstrations were
collected from practicing therapists delivering an intervention
through a robot to a child with ASD in a uncontrolled
classroom setting the children typically receive therapies. In
addition to the robot-mediated intervention being delivered
by the robot as it was teleoperated by a therapist, there was
always one to three additional one-on-one therapies between
a human therapist and a child occurring within the classroom.

A. The Emotion Recognition Intervention

A board-certified behavior analyst-doctoral (Dr. Korneder)
designed the emotion recognition intervention which the
therapists delivered through the robot. The main goal of the
intervention was to teach the children to recognize emotions



only from body language and without any sound effects
nor facial expressions. Recognizing emotions from body
language was a useful skill to learn during the COVID-19
pandemic due to facial expressions being hidden by masks
[23]. The robot’s lack of facial expressions was especially
useful for simulating a scenario where a human’s facial
expressions are hidden by a face mask.

The emotions that were being taught to the children were:
happy, surprised, tired, sad, scared and angry. The interven-
tion was based on standard ABA procedures which includes
three steps. First, a Discriminative Stimulus (SD) is presented
by the therapist teleoperator asking the child how they (i.e
the robot) are feeling and presenting the emotion using only
the robot’s body language. Second, the child is given an
opportunity to respond to the question. Third, social praise is
provided by the therapist teleoperator if the child answered
correctly, a prompt if the child does not answer within a
predefined time, or an error correction if the child answers
incorrectly. Herein, a complete trial is defined as this three
step process. All interventions were one-on-one between the
robot and one child. During the interventions a therapist
teleoperator was remotely controlling the robot while located
in a different room than the classroom where the robot
and child were located. Fig. 1 depicts an intervention being
delivered to a child while the robot is teleoperated.

B. Therapist ABA Intervention Demonstrations

Therapists remotely teleoperated the humanoid Pepper
robot using a VR-based interface to deliver the emotion
recognition intervention to a child with ASD through the
robot. Namely, the therapists equipped a virtual reality head-
set, earphones, a microphone, and hand-held controllers. The
virtual reality headset and earphones enabled the therapist
to view a video stream of the robot’s camera and hear an
audio stream of the robot’s microphone while the robot was
interacting with a child. The therapist could then deliver the
intervention by controlling the robot’s joints by naturally
moving their arms with the hand-held controllers while the
VR interface tracked their body motions and mapped it to the
robots motions. The therapist could also control the robot’s
speech by speaking through a microphone. Please refer to
[11] for more details on the VR teleoperation interface,
intervention design, and learning outcomes of the study.

C. Data Collection

A total of eight therapist participants demonstrated the
emotion recognition intervention by teleoperating the robot
to deliver the intervention to a child with ASD. There
were a total of four children participants and the child
participating in the demonstration was assigned according
to their schedule availability. Each therapist conducted one
intervention session with a child. Each intervention session
consisted of 9 trials with three different emotions presented
three times each. A total of 72 trials of demonstration data
was collected from all the participating therapists. Namely,
in this study we collected the audio from the microphone
utilized by the therapist to control the robot’s speech during

Fig. 1.  User teleoperating a robot to demonstrate the delivery of an
intervention to a child

the intervention and the audio from the robot’s microphone
which recorded all the audio within the classroom where the
child participants were working with the robot.

IV. LEARNING FROM DEMONSTRATION SYSTEM
ARCHITECTURE

Our LfD system consists of two steps: 1) identifying
therapist behaviors during an intervention from the speech
utterances of the therapist teleoperators, and 2) learning
a policy which maps the appropriate therapist behavior to
execute according to the children’s verbal responses. The first
step consists of an unsupervised learning approach where
the therapists’ speech utterances were grouped utilizing a
K-Means clustering algorithm. These groups of utterances,
herein referred to as therapist behaviors, are the different
classes of verbal responses therapist have towards the chil-
dren’s current verbal responses. For example, if the current
emotion being taught to the child is “scared” and the child’s
verbal response is incorrect, the therapist’s behavior should
correspond to a “correction prompt” based on the current
feeling (e.g. “T am feeling scared”). If the child’s response is
correct, the therapist’s behavior should correspond to “social
praise” (e.g. “Good job!”). Once these therapist behaviors
are identified, they are utilized to label the child’s verbal
responses automatically. The child’s verbal responses and
the therapist behaviors used to label them are then used to
train a Deep Neural Network (DNN). Namely, the input data
for training the DNN is the raw spectrogram of the child’s
verbal behavior and the therapist’s behavior labeled to the
child’s verbal behavior is the expected output of the DNN.
The final learned DNN can then be utilized to determine the
appropriate therapist behavior a robot should execute given
a child’s verbal behavior.

A. Identifying Therapist Behaviors During an Intervention

The first step in the LfD system consists of identify-
ing the discrete verbal behaviors therapists have during a
demonstrated intervention using an unsupervised learning
technique on the captured therapist audio data. Each therapist
had his/her own audio data. Google’s speech-to-text API
was applied to each therapist’s audio data to obtain their
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Fig. 2. Deep neural network model architecture

utterances during an intervention. Due to limitations in cur-
rent speech-to-text technologies, there were some therapist
speech utterances that were incorrectly translated or were
undetected. Such errors in utterances were manually fixed
by a researcher. Latent Semantic Analysis (LSA) was then
applied to vectorize the utterances and K-Means clustering
was used to cluster these utterances into discrete therapist
behaviors. The Elbow method was used to identify the
optimal number of clusters (i.e., therapist behaviors) for the
utterances [24]. The Elbow method consists of plotting the
number of clusters against data distortion and the optimum
number of cluster for the data was considered where an
“elbow” appears in the plot. Namely, the “elbow” refers to
when the distortion converges and increasing the number of
clusters does not significantly affect the distortion of the data.
According to the elbow method, we identified the optimal
number of clusters was 10. After examining the contents
of each cluster, two clusters had similar utterances such as
“How am I feeling” and “How do I feel”, which correspond
to the same discriminative stimulus therapist behavior. Con-
sequently, we combined the two clusters and had a final
total of nine clusters. The final nine clusters represented
the following therapist behaviors: discriminative stimulus,
prompts corresponding to each emotion (i.e. scared, sad,
happy, tired, surprised and angry), social praise (e.g. “Good
job!” or “Nice work!” ), and random instructions (e.g. “clap
your hands”, “touch your head”, or “what’s your name”).
These random instructions did not pertain to the emotion
recognition intervention but were a technique utilized by
therapist’s to maintain the motivation and engagement of the
children. These clusters (i.e., therapist intervention behav-
iors) were then used to label the children’s responses.

B. Extracting and Labeling Child Verbal Responses

The children’s verbal response data during the intervention
session was extracted automatically by utilizing the start and
end times of therapists’ behaviors. Namely, the children’s
verbal responses were considered as the duration between
the start of the current therapist behavior and end of the
therapist’s last executed behavior. The rationale for utilizing
the duration between therapist speech behaviors to obtain
children’s verbal responses is due to Google’s speech-to-
text API performing poorly with children’s speech and noisy

classroom environments with multiple other inhabitants.
Each extracted child verbal response was extracted from
the audio data of the intervention session and converted
to a spectrogram. The spectrogram was combined with
the therapist’s last executed behavior to form a data tuple
which was labeled with the current therapist behavior. This
data tuple was then utilized to learn a policy to map the
appropriate therapist behavior to execute according to the
children’s verbal responses.

C. Modeling Therapist Behaviors During an Intervention

A multi-input DNN was utilized to model therapist be-
haviors during the delivery of an intervention, Fig. 2. The
inputs to the model are the last therapist behavior (LTB) and
the Child’s Audio Spectrogram (CAS) after the execution
of the last therapist behavior. The spectrogram and the last
therapist behavior are input into two separate networks and
the network outputs are then combined with two dense layers
to estimate the next appropriate therapist behavior to be
executed. Hence, the DNN defines a policy which maps
the appropriate therapist behavior to execute given a child’s
verbal response and the previous executed therapist behavior.

The first network is a Convolutional Neural Network with
LSTM layers (CNN-LSTM) and takes as input the child’s
audio spectrogram which is a 55x55x1 image. The image is
connected to two convolution layers with RELU activation
functions, two max-pooling layers, two dense layers, and
three LSTM layers. The two convolutional layers have kernel
sizes 4x4 and 3x3 with 32 and 64 filters respectively. The
32-filter convolution layer (CASConv_1) is downsampled
with a 3x3 max-pooling layer (CASPool_1) and connected
to the 64-filter convolution layer (CASConv_2). The CAS-
Conv_2 is downsampled with a 3x3 max-pooling layer
(CASPool_2) and connected to the first dense layer (CAS-
Dense_1). The CASDense_1 consists of 256 fully connected
neurons with a dropout of 0.25. The CASDense_1 is then
connected to 3 LSTM layers (CASLSTM_1, CASLSTM_2
and CASLSTM_3) with 100 units each.

The second network is a dense network with LSTM
layers and takes as input the last therapist behavior which is
defined by the enumeration for its cluster. The last therapist
behavior is passed through four dense layers (LTBDense_1,
LTBDense_2, LTBDense_3 and LTBDense 4) with RELU



activation functions and three LSTM layers (LTBLSTM._1,
LTBLSTM_2 and LTBLSTM_3). The number of neurons in
the first three dense layers increases progressively as we go
deeper into the network with 4, 8 and 16 fully connected
neurons respectively. The first three layers are then followed
by three LSTM layers. The LSTM layers are then connected
to the a dense layer consisting of 3 fully connected neurons.

The outputs of LTBDense_ 4 and CASLSTM_3 are then
combined in one dense layer (Dense_1) with 300 fully
connected neurons and a dropout of 0.25. The Dense_1
is then connected to Dense_2 which consists of 150 fully
connected neurons. The Dense_2 layer is then connected with
the output layer consisting of 9 fully connected neurons, with
each neuron representing a possible therapist behavior to be
executed.

D. Training the Model

A total of 100 data tuples were obtained from the learning
from demonstration user study. Table I provides 6 example
data tuples collected from the therapist demonstrations. We
utilized 75 data tuples for training the DNN model and
reserved 25 data tuples for evaluating our approach. As
previously mentioned, each data tuple consisted of a spec-
trogram of a child’s response, the therapist’s last executed
behavior, and the current therapist behavior which is utilized
to label the data tuple. The model was trained with a
batch size of 5, 100 epochs and 0.0001 initial learning
rate. The loss was calculated using categorical cross-entropy,
and was minimized using the Adam optimizer, which is an
implementation of the gradient descent method [25].

V. RESULTS AND DISCUSSION

We evaluated our model on the remaining 25 data tuples
from the demonstration data collected during our user study.
The overall classification accuracy of the model was 43.48%.
The confusion matrix for these results is provided in Table
II.

From these results we can see that the model can correctly
identify ”SD” and “Social Praise” behaviors, which usually
indicate the beginning and end of a trial. However, the model
was not able to detect different prompt behaviors for each
emotion. We hypothesize this is due to the limited amount
of demonstration data currently available for each prompt
cluster, and the data imbalance present in the current training
dataset. Namely, therapists demonstrated prompts for each
emotion less than other behaviors. Prompts for emotions such
as “Sad”, “Surprised” and “Tired” had only an average of 3
data tuples. On the other hand, the ”SD” and ”Social Praise”
behaviors were demonstrated more frequently during the
interventions with the children, which explains the model’s
ability to better classify these two classes. Regarding prompts
for each emotion, we believe the amount of data compared
to the number of classes and the unbalanced amount of data
instances had the largest impact on the model performance
when classifying a prompt. The input spectrograms also
had minimal variance when therapists provided the different
prompts for each emotion to the child. Moreover, we can

TABLE I
SAMPLES OF DIALOGUE FROM THE TRAINING DATA

Action | 2% Child
ction . . .
m Thera[_)lst Response Therapist Behavior
Behavior
” » | Sad Prompt:
Sample 1 Sad Prompt Happy! I Feel Sad”
Social Praise:
ne gy
Sample 2 Sad Prompt Sad! »Good Job!”
SD:
Sample 3 Social Praise | ”........ ” “"How Do I Feel?
.. Tired”
Social Praise:
I
Sample 4 SD Tired! »Great Work!”
SD:
Sample 5 Social Praise | ... “"How Do I Feel?
.. Angry”
- " Angry Prompt:
/
Sample 6 SD Tired! *I Feel Angry”

observe from the confusion matrix that even with more data
instances, the ”’SD” and ’Social Praise” classes had the most
false positives. This may indicate overfitting of the data
which we believe is also due to an unbalanced dataset. This
was further emphasized in the confusion matrix by some
classes not being included in the test data (i.e. ”Sad” and
”Random”). Nevertheless, the concept has shown potential
for future investigation and we expect that with additional as
well as balanced demonstration data of therapists performing
these behaviors that our model could be trained to handle
these instances.

VI. CONCLUSIONS

In this paper, we developed and deployed a LfD system
in-the-wild to have SARs learn from therapists the delivery
of an ABA-based intervention to children with ASD. The
system was applied in a real-world ABA clinical setting
with practicing therapists demonstrating the delivery of an
emotion recognition intervention to children with ASD in
a classroom. The preliminary demonstration data collected
from the therapists and results of our work demonstrate
that the LfD system architecture is capable of learning
the discrete verbal behaviors used by therapists during an
intervention. Furthermore, preliminary results suggest that
with limited demonstration data the system can learn to apply
the appropriate therapist behavior within some intervention
scenarios with a child. Such results are promising and we
expect that as we continue to collect demonstration data
in-the-wild the model behavior will significantly improve.
Hence, in the future we plan on continuing to collect therapist
demonstrations and improving upon our model development.
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